Growth, Structural and Mechanical Characterization and Reliability of Chemical Vapor Deposited Co and Co3O4 Thin Films as Candidate Materials for Sensing Applications

Article Preview

Abstract:

The adhesion and mechanical stability of thin film coatings on substrates is increasingly becoming a key issue in device reliability as magnetic and storage technology driven products demand smaller, thinner and more complex functional coatings. In the present study, chemical vapor deposited Co and Co3O4 thin films on SiO2 and Si substrates are produced, respectively. Chemical vapor deposition is the most widely used deposition technique which produces thin films well adherent to the substrate. Co and Co3O4 thin films can be used in innovative applications such as magnetic sensors, data storage devices and protective layers. The produced thin films are characterized using nanoindentation technique and their nanomechanical properties (hardness and elastic modulus) are obtained. Finally, an evaluation of the reliability of each thin film (wear analysis) is performed using the hardness to elastic modulus ratio in correlation to the ratio of irreversible work to total work for a complete loading-unloading procedure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-111

Citation:

Online since:

November 2011

Export:

Price:

[1] M.O. Aboelfotoh, A.D. Marwick and J.L. Freeouf: Phys. Rev. B.: Condens. Matter. Vol. 49 (1994), p.10753; E. D. Gaspera, A. Martucci, and M. Post: Sens. Let. 9 (2011), p.600.

Google Scholar

[2] A.E. Dolbak, B.Z. Olshanetsky and S.A. Teys: Surf. Sci. Vol. 373 (1997), p.43; E. D. Gaspera, A. Martucci, M. Yaacob, J. Ou, K. Kalantar-Zadeh, and W. Wlodarski: Sens. Let. 9 (2011), p.595.

Google Scholar

[3] M.J. Pollard, B.A. Weinstock, T.E. Bitterwolf, P.R. Griffiths, A.P. Newbery and J.B. Paine: J. Catal. Vol. 254 (2008), p.218.

Google Scholar

[4] Y. Ikedo, J. Sugiyama, H. Nozaki, H. Itahara, J.H. Brewer, E.J. Ansaldo, G.D. Morris, D. Andreica and A. Amato: Phys. Rev. B: Condens. Matter. Vol. 75 (2007), p.054424.

Google Scholar

[5] C.G. Granqvist: Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam 1995).

Google Scholar

[6] M. Ando, T. Kobayashi, S. Iijima and M.J. Haruta: Mater. Chem. Vol. 7 (1997), p.1779.

Google Scholar

[7] A.U. Mane, K. Shalini and S.A. Shivashankar: J. Phys. IV Vol. 11 (2001), p. Pr3-63.

Google Scholar

[8] N.D. Papadopoulos, P.E. Tsakiridis and E. Hristoforou: J Optoelectron. Adv. M. Vol. 7 (2005), p.2693.

Google Scholar

[9] E.P. Koumoulos, C.A. Charitidis, N.M. Daniolos and D.I. Pantelis: Mater Sci Eng B (2011), in Press, Corrected Proof, doi: 10. 1016/j. mseb. 2011. 01. 015.

Google Scholar

[10] W.C. Oliver and G.M. Pharr: J. Mater. Res. Vol. 7 (1992). p.1564.

Google Scholar

[11] Y. Liu and A.H.W. Ngan: Scripta Mater. Vol. 44 (2001), p.237.

Google Scholar

[12] S. Lucas and J. Chevallier: Surf. Coat. Tech. Vol. 65 (1994), p.128.

Google Scholar

[13] S. Graça, R. Colaço and R. Vilar: Surf. Coat. Tech. Vol. 202 (2007), p.538.

Google Scholar

[14] Y. -T. Chen and S.R. Jian: J. Alloy Compd. Vol. 481 (2009), p.365.

Google Scholar

[15] Y. -T. Chen and C. -M. Cheng: Appl. Phys. Lett. Vol. 73 (1998), p.614.

Google Scholar

[16] J.A. Greenwood and J.B.P. Williamson: Proc. Roy. Soc. Lond. Ser. A, Mathem. Phys. Sci. Vol. 295 (1966), p.300.

Google Scholar

[17] C. -M. Cheng and Y. -T. Chen: Appl. Phys. Lett. Vol. 71 (1997), p.2623.

Google Scholar