Multifunctional Nano and Microparticles for Drug Delivery Systems

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-355

Citation:

Online since:

June 2010

Export:

Price:

[1] Ferrari, M., Cancer nanotechnology: Opportunities and challenges. Nature Nanotechnology, 2007: pp.37-47.

Google Scholar

[2] Jotterand, F., �anomedicine: How it could reshape clinical practice. Nanomedicine, 2007. 2(4): pp.401-405.

DOI: 10.2217/17435889.2.4.401

Google Scholar

[3] Moghimi, S.M., A.C. Hunter, and J.C. Murray, �anomedicine: Current status and future prospects. Faseb Journal, 2005. 19(3): pp.311-330.

DOI: 10.1096/fj.04-2747rev

Google Scholar

[4] Farokhzad, O.C. and R. Langer, �anomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 2006. 58(14): pp.1456-1459.

DOI: 10.1016/j.addr.2006.09.011

Google Scholar

[5] Weissleder, R., K. Kelly, E.Y. Sun, T. Shtatland, and L. Josephson, Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 2005. 23(11): pp.1418-1423.

DOI: 10.1038/nbt1159

Google Scholar

[6] Dash, A.K. and G.C. Cudworth, Therapeutic applications of implantable drug delivery systems. Journal of Pharmacological and Toxicological Methods, 1998. 40(1): pp.1-12.

DOI: 10.1016/s1056-8719(98)00027-6

Google Scholar

[7] Park, J.H., G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, and M.J. Sailor, Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angewandte Chemie-International Edition, 2008. 47(38): pp.7284-7288.

DOI: 10.1002/anie.200801810

Google Scholar

[8] Raddatz, M.S.L., A. Dolf, E. Endl, P. Knolle, M. Famulok, and G. Mayer, Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angewandte Chemie-International Edition, 2008. 47(28): pp.5190-5193.

DOI: 10.1002/anie.200800216

Google Scholar

[9] Steinhauser, I., B. Spankuch, K. Strebhardt, and K. Langer, Trastuzumab-modified nanoparticles: Optimisation of preparation and uptake in cancer cells. Biomaterials, 2006. 27(28): pp.4975-4983.

DOI: 10.1016/j.biomaterials.2006.05.016

Google Scholar

[10] Tae-Jong, Y., Y. Kyeong Nam, K. Eunha, K. Jun Sung, K. Byung Geol, Y. Sang-Hyun, S. Byeong-Hyeok, C. Myung-Haing, L. Jin-Kyu, and P. Seung Bum, Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials. Small, 2006. 2(2): pp.209-15.

Google Scholar

[11] Rosi, N.L. and C.A. Mirkin, �anostructures in biodiagnostics. Chemical Reviews, 2005. 105(4): pp.1547-1562.

Google Scholar

[12] Niemeyer, C.M., �anoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angewandte Chemie-International Edition, 2001. 40(22): pp.4128-4158.

DOI: 10.1002/1521-3773(20011119)40:22<4128::aid-anie4128>3.0.co;2-s

Google Scholar

[14] Vicent, M.J., H. Ringsdorf, and R. Duncan, Polymer therapeutics: Clinical applications and challenges for development preface. Advanced Drug Delivery Reviews, 2009. 61(13): pp.1117-1120.

DOI: 10.1016/j.addr.2009.08.001

Google Scholar

[15] Needham, D., G. Anyarambhatla, G. Kong, and M.W. Dewhirst, A new temperaturesensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Research, 2000. 60(5): pp.1197-1201.

Google Scholar

[16] Ahmed, F. and D.E. Discher, Self-porating polymersomes of peg-pla and peg-pcl: Hydrolysis-triggered controlled release vesicles. Journal of Controlled Release, 2004. 96(1): pp.37-53.

DOI: 10.1016/j.jconrel.2003.12.021

Google Scholar

[17] Tekade, R.K., P.V. Kumar, and N.K. Jain, Dendrimers in oncology: An expanding horizon. Chemical Reviews, 2009. 109(1): pp.49-87.

DOI: 10.1021/cr068212n

Google Scholar

[18] Shim, S.Y., D.K. Lim, and J.M. Nam, Ultrasensitive optical biodiagnostic methods using metallic nanoparticles. Nanomedicine, 2008. 3(2): pp.215-232.

DOI: 10.2217/17435889.3.2.215

Google Scholar

[19] Storhoff, J.J., S.S. Marla, P. Bao, S. Hagenow, H. Mehta, A. Lucas, V. Garimella, T. Patno, W. Buckingham, W. Cork, and U.R. Muller, Gold nanoparticle-based detection of genomic D�A targets on microarrays using a novel optical detection system. Biosensors & Bioelectronics, 2004. 19(8): pp.875-883.

DOI: 10.1016/j.bios.2003.08.014

Google Scholar

[20] Lundstrom, E.A., R.K. Rencken, J.H. van Wyk, L.J.E. Coetzee, J.C.M. Bahlmann, S. Reif, E.A. Strasheim, M.C. Bigalke, A.R. Pontin, L. Goedhals, D.G. Steyn, C.F. Heyns, L.A. Aldera, T.M. Mackenzie, D. Purcea, P.Y. Grosgurin, and H.C. Porchet, Triptorelin 6-month formulation in the management of patients with locally advanced and metastatic prostate cancer an open-label, non-comparative, multicentre, phase iii study. Clinical Drug Investigation, 2009. 29(12): pp.757-765.

DOI: 10.2165/11319690-000000000-00000

Google Scholar

[21] Westphal, M., Z. Ram, V. Riddle, D. Hilt, E. Bortey, and G. Executive Comm Gliadel Study, Gliadel (r) wafer in initial surgery for malignant glioma: Long-term follow-up of a multicenter controlled trial. Acta Neurochirurgica, 2006. 148(3): pp.269-275.

DOI: 10.1007/s00701-005-0707-z

Google Scholar

[22] Gebhart, C.L. and A.V. Kabanov, Evaluation of polyplexes as gene transfer agents. Journal of Controlled Release, 2001. 73(2-3): pp.401-416.

DOI: 10.1016/s0168-3659(01)00357-1

Google Scholar

[23] Mao, H.Q., K. Roy, V.L. Troung-Le, K.A. Janes, K.Y. Lin, Y. Wang, J.T. August, and K.W. Leong, Chitosan-D�A nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. Journal of Controlled Release, 2001. 70(3): pp.399-421.

DOI: 10.1016/s0168-3659(00)00361-8

Google Scholar

[24] Pankhurst, Q.A., N.K.T. Thanh, S.K. Jones, and J. Dobson, Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics, 2009. 42(22).

DOI: 10.1088/0022-3727/42/22/224001

Google Scholar

[25] Ito, A., M. Shinkai, H. Honda, and T. Kobayashi, Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005. 100(1): pp.1-11.

DOI: 10.1263/jbb.100.1

Google Scholar

[26] Ibrahim, A., P. Couvreur, M. Roland, and P. Speiser, �ew magnetic drug carrier. Journal of Pharmacy and Pharmacology, 1983. 35(1): pp.59-61.

DOI: 10.1111/j.2042-7158.1983.tb04269.x

Google Scholar

[27] Jordan, A., R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. Journal of Magnetism and Magnetic Materials, 1999. 194(1-3): pp.185-196.

DOI: 10.1016/s0304-8853(98)00558-7

Google Scholar

[28] Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): pp.3995-4021.

DOI: 10.1016/j.biomaterials.2004.10.012

Google Scholar

[29] Molday, R.S. and D. Mackenzie, Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of Immunological Methods, 1982. 52(3): pp.353-367.

DOI: 10.1016/0022-1759(82)90007-2

Google Scholar

[30] Babes, L., B. Denizot, G. Tanguy, J.J. Le Jeune, and P. Jallet, Synthesis of iron oxide nanoparticles used as mri contrast agents: A parametric study. Journal of Colloid and Interface Science, 1999. 212(2): pp.474-482.

DOI: 10.1006/jcis.1998.6053

Google Scholar

[32] Verstappen, C.C.P., J.J. Heimans, K. Hoekman, and T.J. Postma, �eurotoxic complications of chemotherapy in patients with cancer - clinical signs and optimal management. Drugs, 2003. 63(15): pp.1549-1563.

DOI: 10.2165/00003495-200363150-00003

Google Scholar

[33] Gupta, P.K., Drug targeting in cancer-chemotherapy - a clinical perspective. Journal of Pharmaceutical Sciences, 1990. 79(11): pp.949-962.

DOI: 10.1002/jps.2600791102

Google Scholar

[34] Mornet, S., S. Vasseur, F. Grasset, and E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry, 2004. 14(14): pp.2161-2175.

DOI: 10.1039/b402025a

Google Scholar

[35] Storm, G., S.O. Belliot, T. Daemen, and D.D. Lasic, Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 1995. 17(1): pp.31-48.

DOI: 10.1016/0169-409x(95)00039-a

Google Scholar

[36] Gabizon, A., R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Research, 1994. 54(4): pp.987-992.

DOI: 10.1007/978-2-8178-0765-2_174

Google Scholar

[37] Bakkerwoudenberg, I., G. Storm, and M.C. Woodle, Liposomes in the treatment of infections. Journal of Drug Targeting, 1994. 2(5): pp.363-371.

Google Scholar

[38] Grief, A.D. and G. Richardson, Mathematical modelling of magnetically targeted drug delivery. Journal of Magnetism and Magnetic Materials, 2005. 293(1): pp.455-463.

DOI: 10.1016/j.jmmm.2005.02.040

Google Scholar

[39] Rotariu, O. and N.J.C. Strachan, Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment. Journal of Magnetism and Magnetic Materials, 2005. 293(1): pp.639-646.

DOI: 10.1016/j.jmmm.2005.01.081

Google Scholar

[40] McNaughton, B.H., J.N. Anker, and R. Kopelman, Magnetic microdrill as a modulated fluorescent ph sensor. Journal of Magnetism and Magnetic Materials, 2005. 293(1): p.696701.

DOI: 10.1016/j.jmmm.2005.02.073

Google Scholar

[41] Ishiyama, K., M. Sendoh, A. Yamazaki, M. Inoue, and K.I. Arai, Swimming of magnetic micro-machines under a very wide-range of reynolds number conditions. Ieee Transactions on Magnetics, 2001. 37(4): pp.2868-2870.

DOI: 10.1109/20.951331

Google Scholar

[42] Kramer, P.A., Albumin microspheres as vehicles for achieving specificity in drug delivery. Journal of Pharmaceutical Sciences, 1974. 63(10): pp.1646-1647.

DOI: 10.1002/jps.2600631044

Google Scholar

[43] Gupta, P.K. and C.T. Hung, Comparative disposition of adriamycin delivered via magnetic albumin microspheres in presence and absence of magnetic-field in rats. Life Sciences, 1990. 46(7): pp.471-479.

DOI: 10.1016/0024-3205(90)90002-9

Google Scholar

[44] Wilbanks, G.A. and J.W. Streilein, Distinctive humoral immune-responses following anterior-chamber and intravenous administration of soluble-antigen - evidence for active suppression of igg2-secreting lymphocytes-b. Immunology, 1990. 71(4): pp.566-572.

Google Scholar

[45] Berry, C.C., Progress in functionalization of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 2009: p.224003 (9 pp. ).

Google Scholar

[46] Gref, R., Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Biodegradable long-circulating polymeric nanospheres. Science, 1994. 263(5153): p.16001603.

DOI: 10.1126/science.8128245

Google Scholar

[47] Zhang, J. and R.D.K. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response. Acta Biomaterialia, 2007. 3: pp.838-850.

DOI: 10.1016/j.actbio.2007.05.011

Google Scholar

[48] Kohler, N., C. Sun, J. Wang, and M.Q. Zhang, Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir, 2005. 21(19): pp.8858-8864.

DOI: 10.1021/la0503451

Google Scholar

[49] Florence, A.T., The oral absorption of micro- and nanoparticulates: �either exceptional nor unusual. Pharmaceutical Research, 1997. 14(3): pp.259-266.

Google Scholar

[51] Fuhrer, R., E.K. Athanassiou, N.A. Luechinger, and W.J. Stark, Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small, 2009. 5(3): pp.383-388.

DOI: 10.1002/smll.200801091

Google Scholar

[52] Urbina, M.C., S. Zinoveva, T. Miller, C.M. Sabliov, W.T. Monroe, and C. Kumar, Investigation of magnetic nanoparticle-polymer composites for multiple-controlled drug delivery. Journal of Physical Chemistry C, 2008. 112(30): pp.11102-11108.

DOI: 10.1021/jp711517d

Google Scholar

[53] Liu, T.Y., S.H. Hu, K.H. Liu, R.S. Shaiu, D.M. Liu, and S.Y. Chen, Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir, 2008. 24(23): pp.13306-13311.

DOI: 10.1021/la801451v

Google Scholar

[54] Yuan, Q., R. Venkatasubramanian, S. Hein, and R.D.K. Misra, A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-graftedcopolymer. Acta Biomaterialia, 2008. 4(4): pp.1024-1037.

DOI: 10.1016/j.actbio.2008.02.002

Google Scholar

[55] Childs, G.V., Continuation of studies of receptor mediated endocytosis, http: /www. Cytochemistry. �et/cell-biology/recend2. Htm. (1996).

Google Scholar

[56] Philipse, A.P., M.P.B. Vanbruggen, and C. Pathmamanoharan, Magnetic silica dispersions - preparation and stability of surface-modified silica particles with a magnetic core. Langmuir, 1994. 10(1): pp.92-99.

DOI: 10.1021/la00013a014

Google Scholar

[57] Stober, W., A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in micron size range. Journal of Colloid and Interface Science, 1968. 26(1): p.62.

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar

[58] Yoon, T.J., K.N. Yu, E. Kim, J.S. Kim, B.G. Kim, S.H. Yun, B.H. Sohn, M.H. Cho, J.K. Lee, and S.B. Park, Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomateriats. Small, 2006. 2(2): pp.209-215.

DOI: 10.1002/smll.200500360

Google Scholar

[59] Hu, S.H., D.M. Liu, W.L. Tung, C.F. Liao, and S.Y. Chen, Surfactant-free, self-assembled pva-iron oxide/silica core-shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Advanced Functional Materials, 2008. 18(19): pp.2946-2955.

DOI: 10.1002/adfm.200800428

Google Scholar

[60] Hu, S.H., T.Y. Liu, H.Y. Huang, D.M. Liu, and S.Y. Chen, Magnetic-sensitive silica nanospheres for controlled drug release. Langmuir, 2008. 24(1): pp.239-244.

DOI: 10.1021/la701570z

Google Scholar

[61] Hu, L., Z.W. Mao, and C.Y. Gao, Colloidal particles for cellular uptake and delivery. Journal of Materials Chemistry, 2009. 19(20): pp.3108-3115.

DOI: 10.1039/b815958k

Google Scholar

[62] Liu, H.M., S.H. Wu, C.W. Lu, M. Yao, J.K. Hsiao, Y. Hung, Y.S. Lin, C.Y. Mou, C.S. Yang, D.M. Huang, and Y.C. Chen, Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small, 2008. 4(5): pp.619-626.

DOI: 10.1002/smll.200700493

Google Scholar

[63] Hildebrandt, B., P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology Hematology, 2002. 43(1): pp.33-56.

DOI: 10.1016/s1040-8428(01)00179-2

Google Scholar

[64] Overgaard, J., Effect of hyperthermia on malignant cells invivo - review and a hypothesis. Cancer, 1977. 39(6): pp.2637-2646.

DOI: 10.1002/1097-0142(197706)39:6<2637::aid-cncr2820390650>3.0.co;2-s

Google Scholar

[65] Sharma, R. and C.J. Chen, �ewer nanoparticles in hyperthermia treatment and thermometry. Journal of Nanoparticle Research, 2009. 11(3): pp.671-689.

Google Scholar

[66] Jordan, A., R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 2001. 225(1-2): pp.118-126.

DOI: 10.1016/s0304-8853(00)01239-7

Google Scholar

[67] Wust, P., B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P.M. Schlag, Hyperthermia in combined treatment of cancer. Lancet Oncology, 2002. 3(8): pp.487-497.

DOI: 10.1016/s1470-2045(02)00818-5

Google Scholar

[68] Lehmann, J., A. Natarajan, G.L. DeNardo, R. Ivkov, A.R. Foreman, C. Catapano, G. Mirick, T. Quang, C. Gruettner, and S.J. DeNardo, �anoparticle thermotherapy and external beam radiation therapy for human prostate cancer cells. Cancer Biotherapy and Radiopharmaceuticals, 2008. 23(2): pp.265-271.

DOI: 10.1089/cbr.2007.0411

Google Scholar

[69] Steger, A.C., W.R. Lees, K. Walmsley, and S.G. Bown, Interstitial laser hyperthermia - a new approach to local destruction of tumors. British Medical Journal, 1989. 299(6695): pp.362-365.

DOI: 10.1136/bmj.299.6695.362

Google Scholar

[70] Ruiz-Hernandez, E., M.C. Serrano, D. Arcos, and M. Vallet-Regi, Glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. Journal of Biomedical Materials Research Part A, 2006. 79A(3): pp.533-543.

DOI: 10.1002/jbm.a.30889

Google Scholar

[71] Ruiz-Hernandez, E., A. Lopez-Noriega, D. Arcos, and M. Vallet-Regi, Mesoporous magnetic microspheres for drug targeting. Solid State Sciences, 2008. 10(4): pp.421-426.

DOI: 10.1016/j.solidstatesciences.2007.11.026

Google Scholar

[72] Liu, T.Y., S.H. Hu, D.M. Liu, and S.Y. Chen, Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir, 2006. 22(14): pp.5974-5978.

DOI: 10.1021/la060371e

Google Scholar

[73] Souza, K.C., J.D. Ardisson, and E.M.B. Sousa, Study of mesoporous silica/magnetite systems in drug controlled release. Journal of Materials Science-Materials in Medicine, 2009. 20(2): pp.507-512.

DOI: 10.1007/s10856-008-3592-1

Google Scholar

[74] Lopez-Noriega, A., E. Ruiz-Hernandez, S.M. Stevens, D. Arcos, M.W. Anderson, O. Terasaki, and M. Vallet-Regi, Mesoporous microspheres with doubly ordered core-shell structure. Chemistry of Materials, 2009. 21(1): pp.18-20.

DOI: 10.1021/cm8028565

Google Scholar

[75] Julian-Lopez, B., C. Boissiere, C. Chaneac, D. Grosso, S. Vasseur, S. Miraux, E. Duguet, and C. Sanchez, Mesoporous maghemite-organosilica microspheres: A promising route towards multifunctional platforms for smart diagnosis and therapy. Journal of Materials Chemistry, 2007. 17(16): pp.1563-1569.

DOI: 10.1039/b615951f

Google Scholar

[76] Ruiz-Hernandez, E., A. Lopez-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, and M. Vallet-Regi, Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chemistry of Materials, 2007. 19(14): pp.3455-3463.

DOI: 10.1021/cm0705789

Google Scholar

[77] Giri, S., B.G. Trewyn, M.P. Stellmaker, and V.S.Y. Lin, Stimuli-responsive controlledrelease delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angewandte Chemie-International Edition, 2005. 44(32): pp.5038-5044.

DOI: 10.1002/anie.200501819

Google Scholar

[78] Yan, X.X., C.Z. Yu, X.F. Zhou, J.W. Tang, and D.Y. Zhao, Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angewandte ChemieInternational Edition, 2004. 43(44): pp.5980-5984.

DOI: 10.1002/anie.200460598

Google Scholar

[79] Yan, X.X., H.X. Deng, X.H. Huang, G.Q. Lu, S.Z. Qiao, D.Y. Zhao, and C.Z. Yu, Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of NonCrystalline Solids, 2005. 351(40-42): pp.3209-3217.

DOI: 10.1016/j.jnoncrysol.2005.08.024

Google Scholar

[80] Zhao, Y.F., S.C.J. Loo, Y.Z. Chen, F.Y.C. Boey, and J. Ma, In situ saxrd study of sol-gel induced well-ordered mesoporous bioglasses for drug delivery. Journal of Biomedical Materials Research Part A, 2008. 85A(4): pp.1032-1042.

DOI: 10.1002/jbm.a.31545

Google Scholar

[81] Leonova, E., I. Izquierdo-Barba, D. Arcos, A. Lopez-Noriega, N. Hedin, M. Vallet-Regi, and M. Eden, Multinuclear solid-state nmr studies of ordered mesoporous bioactive glasses. Journal of Physical Chemistry C, 2008. 112(14): pp.5552-5562.

DOI: 10.1021/jp7107973

Google Scholar

[82] Izquierdo, B., D. Arcos, Y. Sakamoto, O. Terasaki, A. Lopez-Noriega, and M. Vallet-Regi, High-performance mesoporous bioceramics mimicking bone mineralization. Chemistry of Materials, 2008: pp.3191-8.

DOI: 10.1021/cm800172x

Google Scholar

[83] Xiu, T.P., Q. Liu, and J.C. Wang, Comparisons between surfactant-templated mesoporous and conventional sol-gel-derived cao-b2o3-sio2 glasses: Compositional, textural and in vitro bioactive properties. Journal of Solid State Chemistry, 2008. 181(4): pp.863-870.

DOI: 10.1016/j.jssc.2008.01.012

Google Scholar

[84] Li, X., X.P. Wang, D.N. He, and J.L. Shi, Synthesis and characterization of mesoporous cao-mo-sio2-p2o5 (m = mg, zn, cu) bioactive glasses/composites. Journal of Materials Chemistry, 2008. 18(34): pp.4103-4109.

DOI: 10.1039/b805114c

Google Scholar

[85] Lopez-Noriega, A., D. Arcos, I. Izquierdo-Barba, Y. Sakamoto, O. Terasaki, and M. ValletRegi, Ordered mesoporous bioactive glasses for bone tissue regeneration. Chemistry of Materials, 2006. 18(13): pp.3137-3144.

DOI: 10.1021/cm060488o

Google Scholar

[87] Sun, J., Y.S. Li, L. Li, W.R. Zhao, J.H. Gao, M.L. Ruan, and J.L. Shi, Functionalization and bioactivity in vitro of mesoporous bioactive glasses. Journal of Non-Crystalline Solids, 2008. 354(32): pp.3799-3805.

DOI: 10.1016/j.jnoncrysol.2008.05.001

Google Scholar

[88] Yun, H.S., S.E. Kim, and Y.T. Hyeon, Highly ordered mesoporous bioactive glasses with im3m symmetry. Materials Letters, 2007. 61(23-24): pp.4569-4572.

DOI: 10.1016/j.matlet.2007.02.075

Google Scholar

[89] Yun, H.S., S.E. Kim, and Y.T. Hyun, Preparation of 3d cubic ordered mesoporous bioactive glasses. Solid State Sciences, 2008. 10(8): pp.1083-1092.

DOI: 10.1016/j.solidstatesciences.2007.11.037

Google Scholar

[90] Shi, Q.H., J.F. Wang, J.P. Zhang, J. Fan, and G.D. Stucky, Rapid-setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatite formation. Advanced Materials, 2006. 18(8): p.1038-+.

DOI: 10.1002/adma.200502292

Google Scholar

[91] Yun, H.S., S.E. Kim, and Y.T. Hyeon, Design and preparation of bioactive glasses with hierarchical pore networks. Chemical Communications, 2007(21): pp.2139-2141.

DOI: 10.1039/b702103h

Google Scholar

[92] Li, X., J.L. Shi, X.P. Dong, L.X. Zhang, and H.Y. Zeng, A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. Journal of Biomedical Materials Research Part A, 2008. 84A(1): pp.84-91.

DOI: 10.1002/jbm.a.31371

Google Scholar

[93] Li, X., X.P. Wang, H.R. Chen, P. Jiang, X.P. Dong, and J.L. Shi, Hierarchically porous bioactive glass scaffolds synthesized with a puf and p.123 cotemplated approach. Chemistry of Materials, 2007. 19(17): pp.4322-4326.

DOI: 10.1021/cm0708564

Google Scholar

[94] Zhu, Y.F., C.T. Wu, Y. Ramaswamy, E. Kockrick, P. Simon, S. Kaskel, and H. Zrelqat, Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (mbgs) scaffolds for bone tissue engineering. Microporous and Mesoporous Materials, 2008. 112(1-3): pp.494-503.

DOI: 10.1016/j.micromeso.2007.10.029

Google Scholar

[95] Yun, H.S., S.E. Kim, Y.T. Hyun, S.J. Heo, and J.W. Shin, Three-dimensional mesoporousgiantporous inorganic/organic composite scaffolds for tissue engineering. Chemistry of Materials, 2007. 19(26): pp.6363-6366.

DOI: 10.1021/cm7023923

Google Scholar

[96] Yun, H.S., S.E. Kim, Y.T. Hyun, S.J. Heo, and J.W. Shin, Hierarchically mesoporousmacroporous bioactive glasses scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2008. 87B(2): pp.374-380.

DOI: 10.1002/jbm.b.31114

Google Scholar

[97] Zhu, Y.F. and S. Kaskel, Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (mbgs) and bioactive glasses (bgs) scaffolds. Microporous and Mesoporous Materials, 2009. 118(1-3): pp.176-182.

DOI: 10.1016/j.micromeso.2008.08.046

Google Scholar

[98] Xia, W. and J. Chang, Well-ordered mesoporous bioactive glasses (mbg): A promising bioactive drug delivery system. Journal of Controlled Release, 2006. 110(3): pp.522-530.

DOI: 10.1016/j.jconrel.2005.11.002

Google Scholar

[99] Zhao, L.Z., X.X. Yan, X.F. Zhou, L. Zhou, H.N. Wang, H.W. Tang, and C.Z. Yu, Mesoporous bioactive glasses for controlled drug release. Microporous and Mesoporous Materials, 2008. 109(1-3): pp.210-215.

DOI: 10.1016/j.micromeso.2007.04.041

Google Scholar