On Cancer Nanotechnology

Article Preview

Abstract:

Although governments invest billions of dollars in cancer research, cancer remains one of the major causes of death worldwide (Liu et al., 2007). During the last decades, outstanding results have been attained in fundamental cancer biology but, unfortunately, they have not been translated in even distantly comparable progressions in the clinic. The main reason for this gap being the inability to administer therapeutic agents so that they can reach target cells without or with minimal side-effects (Ferrari, 2005). Today, scientists are faced with the recognition that very few molecules reach the desired locations and thus fail to selectively reach the target cells. Consequently, patients experience a very poor quality of life (Ferrari, 2004; Ferrari, 2005; Chan, 2006).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-332

Citation:

Online since:

June 2010

Export:

Price:

[1] ALEXIS F., PRIDGEN E., MOLMAR L.K., FAROKHZAD O.C., Factors affecting the clearance and biodistribution of polymeric nanoparticles, Molecular Pharmaceutics 5, 4 (2008), pp.505-515.

DOI: 10.1021/mp800051m

Google Scholar

[2] ALEXIS F., RHEE J-W., RICHIE J.P., RADOVIC-MORENO A. F., LANGER R., FAROKHZAD O.C., ew frontiers in nanotechnology for cancer treatment, Urologic Oncology: Seminars and Original Investigations 26 (2008), pp.74-85.

DOI: 10.1016/j.urolonc.2007.03.017

Google Scholar

[3] AKIN D., STURGIS J., RAGHEB K., SHERMAN D., BURKHOLDER K., ROBINSON J.P., BHUNIA A.K., MOHAMMED S., BASHIR R., Bacteria-mediated delivery of nanoparticles and cargo into cells, Nature Nanotechnology 2 (2007), pp.441-449.

DOI: 10.1038/nnano.2007.149

Google Scholar

[4] CAPRI S., CATTANEO G., Cost-minimization analysis of pegylated liposomal doxorubicin versus topotecan for the treatment of ovarian cancer in Italy, Clinical Therapeutics 28, 6 (2003).

DOI: 10.1016/s0149-2918(03)80172-8

Google Scholar

[5] CARUTHERS S.D., WICKLINE S.A., LANZA G.M., anotechnological applications in medicine, Current Opinion in Biotechnology 18 (2007), pp.26-30.

DOI: 10.1016/j.copbio.2007.01.006

Google Scholar

[6] CHAN V.S.W., anomedicine: An unresolved regulatory issue, Regulatory Toxicology and Pharmacology 46 (2006), pp.218-224.

DOI: 10.1016/j.yrtph.2006.04.009

Google Scholar

[7] CHERTOK B., MOFFAT B.A., DAVID A.E., YU F., BERGEMANN C., ROSS B.D., YANG V.C., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials 29, 4 (2007), pp.487-496.

DOI: 10.1016/j.biomaterials.2007.08.050

Google Scholar

[8] CHO K., WANG X., NIE S., CHEN Z., SHIN D. M., Therapeutic nanoparticles for drug delivery in cancer, Clinical Cancer Res. 14, 5 (2008), pp.1310-1316.

DOI: 10.1158/1078-0432.ccr-07-1441

Google Scholar

[9] DALLASTA L.M., PISAROV L.A., ESPLEN J.E., WERLEY J.V., MOSES A.V., NELSON J.A., ACHIM C.L., Blood-brain barrier tight junction disruption in human immuno deficiency virus-1 encephalitis, Am. J. pathol. 155, 6 (1999), p.1915-(1927).

DOI: 10.1016/s0002-9440(10)65511-3

Google Scholar

[10] DECUZZI P., FERRARI M., The role of specific and non-specific interactions in receptormediated endocytosis of nanoparticles, Biomaterials 28 (2007), pp.2915-2922.

DOI: 10.1016/j.biomaterials.2007.02.013

Google Scholar

[11] DUNCAN R., Polymer conjugates as anticancer nanomedicines, Nature Reviews 6 (2006), pp.688-701.

DOI: 10.1038/nrc1958

Google Scholar

[12] FAN W., SUI M., HUANG Y., « Glucocorticoids selectively inhibit paclitaxel-induced apoptosis: Mechanisms and its clinical impact", Current Medicinal Chemistry 11 (2004), pp.403-411.

DOI: 10.2174/0929867043455990

Google Scholar

[13] FAROKHZAD M.C., LANGER R., anomedicine: Developing smarter therapeutic and diagnostic modalities", Advanced Drug Delivery Reviews 58 (2006).

DOI: 10.1016/j.addr.2006.09.011

Google Scholar

[15] FERRARI M., anovector therapeutics, Current Opinion in Chemical Biology 9 (2004), pp.343-346.

Google Scholar

[16] FERRARI M., The mathematical engines of nanomedicine, Small Journal 4 (2008) p. (2025).

Google Scholar

[17] GAO K., JIANG X., Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles, Pharmaceutical nanotechnology (2006).

DOI: 10.1016/j.ijpharm.2005.11.040

Google Scholar

[18] GU F.X., KARNIK R., WANG A.Z., ALEXIS F., LEVY-NISSENBAUM E., HONG S., LANGER R.S., FAROKHZAD O.C., Targeted nanoparticles for cancer therapy, Nanotoday 2, 3 (2007), pp.14-21.

DOI: 10.1016/s1748-0132(07)70083-x

Google Scholar

[19] HEATH J. R., DAVIS M. E., anotechnology and cancer, Annual Review of Medicine 59 (2008), pp.251-265.

Google Scholar

[20] HELDIN C. -H., RUBIN K., PIETRAS K., OSTMAN A., High interstitial fluid pressure - An obstacle in cancer therapy, Nature Reviews 4 (2004), pp.806-813.

DOI: 10.1038/nrc1456

Google Scholar

[21] HOLLIGER P., HUDSON P.J., Engineered antibody fragments and the rise of single domains, Nature Biotechnology 23 (2005), pp.1126-1136.

DOI: 10.1038/nbt1142

Google Scholar

[22] HOLMBERG S.B., FORSSELL-ARONSSON E., GRETARSDOTTIR J., JACOBSSON L, RIPPE B., Vascular clearance by the reticulo-endothelial system - Measurements using two different-sized albumincolloids, Scandinavian Journal of Clinical and Laboratory Investigation 50, 8 (1990).

DOI: 10.3109/00365519009104954

Google Scholar

[23] IMAI K., TAKAOKA A., Comparing antibody and small-molecule therapies for cancer, Nature Reviews Cancer 6 (2006), pp.714-727.

DOI: 10.1038/nrc1913

Google Scholar

[24] JAIN K. K., Applications of nanobiotechnology in clinical diagnostics, Clinical Chemistry 53, 11 (2007), p.2002-(2009).

Google Scholar

[25] JALLOULI Y., PAILLARD A., CHANG J., SEVIN E., BETBEDER D., Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro, International Journal of Pharmaceutics 344 (2007), pp.103-109.

DOI: 10.1016/j.ijpharm.2007.06.023

Google Scholar

[26] JUILLERAT-JEANNERET L., The targeted delivery of cancer drugs across the bloodbrain barrier : Chemical modifications of drugs or drug-nanoparticles?, Drug Discovery Today 13, 23 (2008), pp.1099-1106.

DOI: 10.1016/j.drudis.2008.09.005

Google Scholar

[27] KLOOVER J.S., DEN BAKKER M.A., GELDERBLOM H., VAN MEERBEECK J., Fatal outcome of a hypersensitivity reaction to paclitaxel: A critical review of premedication regimens, British Journal of cancer 90 (2004).

DOI: 10.1038/sj.bjc.6601303

Google Scholar

[29] LEE KOO Y. -E., REDDY G.R., BHOJANI M., SCHNEIDER R., PHILBERT M.A., REHEMTULLA A., ROSS B.D., KOPELMAN R., Brain cancer diagnosis and therapy with nanoplatforms, Advanced Drug Delivery Reviews 58, 14 (2006), pp.1556-1577.

DOI: 10.1016/j.addr.2006.09.012

Google Scholar

[30] LIU Y., MIYOSHI H., NAKAMURA M., « anomedicine for drug delivery and imaging : A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles », International Journal of Cancer 120 (2007), pp.2527-2537.

DOI: 10.1002/ijc.22709

Google Scholar

[31] LUNT S.J., KALLIOMAKI T.M.K., BROWN A., YANG V.X., MILOSEVIC M., HILL R.P., Interstitial Fluid Pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumors, BMC Cancer 8, 2 (2008), 14p.

DOI: 10.1186/1471-2407-8-2

Google Scholar

[32] MING-CHENG CHENG M., CUDA G., BUNIMOVICH Y.L., GASPARI M., HEATH J.R., HILL H.D., MIRKIN C.A., NIJDAM A.J., TERRACCIANO R., THUNDAT T., FERRARI M., anotechnologies for biomolecular detection and medical diagnostics, Current Opinion in Chemical Biology 10 (2006).

DOI: 10.1016/j.cbpa.2006.01.006

Google Scholar

[33] MISRA A., GANESH S., SHAHIWALA A., Drug delivery to the central nervous system: A review, J. Pharm. Pharmaceut. Sci 6, 2 (2003), pp.252-273.

Google Scholar

[34] OJEDA B., DE SANDE L.M., CASADO A., MERINO P., CASADO M.A., Costeffectiveness analysis of pegylated liposomal doxorubicin hydrochloride versus topotecan in the treatment of patients with recurrent epithelial ovarian cancer in Spain, British Journal of Cancer 89, 6 (2003).

DOI: 10.1038/sj.bjc.6601228

Google Scholar

[35] OWENS D.E., PEPPAS N.A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, International Journal of Pharmaceutics 307, 1 (2006), pp.93-102.

DOI: 10.1016/j.ijpharm.2005.10.010

Google Scholar

[36] OZBEN T., Mechanisms and strategies to overcome multiple drug resistance in cancer, FEBS Letters 580 (2006), pp.2903-2909.

DOI: 10.1016/j.febslet.2006.02.020

Google Scholar

[37] PANCHAPAKESAN B., anotechnology: Tiny technology - tremendous therapeutic potential, Oncology Issues November/December (2005).

Google Scholar

[38] PARK J.W., Lipsome-based drug delivery for breast cancer treatment, Breast Cancer Research 4 (2002), pp.95-99.

Google Scholar

[39] PRASAD P.N., ROY I., BERGEY E.J., OHULCHANSKY T.Y., PUDAVAR H., Use of photodynamic therapy therapeutic agents entrapped in ceramic nanoparticles, Trends in Nanomaterials.

Google Scholar

[40] PRATO M., KOSTARELOS K., BIANCO A., Functionalized carbon nanotubes in drug design and discovery", Accounts of Chemical Research 441 (2008).

DOI: 10.1021/ar700089b

Google Scholar

[42] ROY I., OHULCHANSKYY T.Y., PUDAVAR H.E., BERGEY E.J., OSEROFF A.R., MORGAN J., DOUGHERTY T.J., PRASAD P.N., Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy, Journal of the American Chemical Society 125, 26 (2003).

DOI: 10.1021/ja0343095

Google Scholar

[43] SANVICENS N., MARCO M.P., Multifunctional nanoparticles - Properties and prospects for their use in human medicine, Trends in Biotechnology 26, 8 (2008), p.425433.

DOI: 10.1016/j.tibtech.2008.04.005

Google Scholar

[44] SENGUPTA S., SASISEKHARAN R., Exploiting nanotechnology to target cancer, British Journal of Cancer 96 (2007), pp.1315-1319.

DOI: 10.1038/sj.bjc.6603707

Google Scholar

[45] SINHA R., KIM G. J., NIE S., SHIN D. M., anotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery, Molecular Cancer Therapeutics 5, 8 (2006), p.1909-(1917).

DOI: 10.1158/1535-7163.mct-06-0141

Google Scholar

[46] SMITH D.H., ADAMS J.R., JOHNSTON S.R.D., GORDON A., DRUMMOND M.F., BENNETT C.L., A comparative economic analysis of pegylated liposomal doxorubicin versus topotecan in ovarian cancer in the U.S.A. and the U.K., Annals of Oncology 13 (2002).

DOI: 10.1093/annonc/mdf275

Google Scholar

[47] SOUZA G.R., CHRISTIANSON D.R., STAQUICINI F.I., OZAWA M.G., SNYDER E.Y., SIDMAN R.L., MILLER J.H., ARAP W., PASQUALINI R., etworks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents, PNAS 103, 5 (2006).

DOI: 10.1073/pnas.0509739103

Google Scholar

[48] STEINFELD U., PAULI C., KALTZ N., BERGEMANN C., LEE H. -L., T lymphocytes as potential therapeutic drug carrier for cancer treatment, International Journal of Pharmaceutics 311 (2006), pp.229-236.

DOI: 10.1016/j.ijpharm.2005.12.040

Google Scholar

[49] SURI S.S., FENNIRI H., SINGH B., « anotechnology-based drug delivery systems », Journal of Occupational Medicine and Toxicology (2), 2007, 6p.

Google Scholar

[50] TAN K., CHEANG P., HO I.A., LAM P.Y., HUI K.M., anosized bioceramic particles could function as efficient gene delivery vehicles with target specificity for the spleen, Gene Therapy 14, 10 (2007), pp.828-835.

DOI: 10.1038/sj.gt.3302937

Google Scholar

[51] TANAKA T., DECUZZI P., CRISTOFANILLI M., SAKAMOTO J.H., TASCIOTTI E., ROBERTSON F.M., FERRARI M., anotechnology for breast cancer therapy", Biomed Microdevices (2008).

DOI: 10.1007/s10544-008-9209-0

Google Scholar

[53] TOMALIA D.A., REYNA L.A., SVENSON S., « Dendrimers as multi-purpse nanodevices for oncology drug delivery and diagnostic imaging », Biochemical Society Transactions 35 (2007), pp.61-67.

DOI: 10.1042/bst0350061

Google Scholar

[54] TORCHILIN VP, Multifunctional nanocarriers, Advanced Drug Delivery Reviews 58 (2006), pp.1532-1555.

DOI: 10.1016/j.addr.2006.09.009

Google Scholar

[55] TORCHILIN V., Multifunctional and stimuli-sensitive pharmaceutical carriers, European Journal of Pharmaceutics and Biopharmaceutics (2008).

Google Scholar

[56] XiANG L., BIN W., HUALI J., WEI J., JIESHENG T., FENG G., YING L., Bacterial magnetic particles (BMPs)-PEI as a novel and efficiënt nonviral gene delivery system, The Journal of Gene Medicine 9 (2007), pp.679-690.

DOI: 10.1002/jgm.1068

Google Scholar

[57] WANG X., YANG L., CHEN Z., SHIN D.M., Application of nanotechnology in cancer therapy and imaging, CA Cancer J Clin 58, 2 (2008), pp.97-110.

Google Scholar

[58] WU H. -C., CHANG D. -K., HUANG C. -T., Targeted therapy for cancer, Journal of Cancer Molecules 2, 2 (2006), pp.57-66.

Google Scholar

[59] YEZHELYEV M.V., GAO X., XING Y., AL-HAJJ A., NIE S., O'REGAN R.M., Emerging use of nanoparticles in diagnosis and treatment of breast cancer, Lancet Oncology 7 (2006), pp.657-667.

DOI: 10.1016/s1470-2045(06)70793-8

Google Scholar

[60] YIH T.C., AL-FANDI M., Engineered nanoparticles as precise drug delivery systems, Journal of Cellular Biochemistry 97 (2006), pp.1184-1190.

DOI: 10.1002/jcb.20796

Google Scholar

[61] ZHANG L., GU F.X., CHAN J.M., WANG A.Z., LANGER R.S., FAROKZHAD O.C., anoparticles in medicine: Therapeutic applications and developments, Clinical Pharmacology & Therapeutics 83, 5, pp.761-76.

Google Scholar