Electronic Properties of Wires Fabricated via Dielectrophoresis of Colloidal Gold Nanoparticles

Article Preview

Abstract:

Gold nanoparticles were fabricated via the precipitation of gold that follows the reduction of tetrachloroauric acid in the presence of a ligand such as citric acid. Synthesis and stabilization of gold nanoparticles has been achieved in a variety of solution environments whose character ranges from polar (water) to non-polar such as dodecane. The size of the nanoparticles was measured through Mie theory analysis of extinction of UV-visible spectra and transmission electron microscope (TEM) images of particles dried onto a TEM grid. Successful mechanical ‘break-junction’ experiments in air and in the colloidal solutions demonstrate that the lowdimensional transport character observed in such experiments is not significantly affected by the solution/environment. Evidence has been obtained that, at and near the time of formation, the dielectrophoretically-grown wires formed within these colloidal suspensions have similar electrical transport characteristics to those found in mechanical break junctions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-126

Citation:

Online since:

July 2006

Export:

Price:

[1] MA Reed, C Zhou, C.J. Muller, T.P. Burgin and J.M. Tour: Science Vol. 278 (1997), p.252.

Google Scholar

[2] E.G. Emberly and G. Kirczenow: Phys. Rev. B Vol. 64, (2001), p.125318.

Google Scholar

[3] E.G. Emberly and G. Kirczenow: Phys. Rev. B Vol. 64 (2001), p.235412.

Google Scholar

[4] B.A. Mantooth and P.S. Weiss: Proc. IEEE Vol. 91 (2003), p.1785.

Google Scholar

[5] G. Frens: Nature Physical Science Vol. 241 (1973), p.20.

Google Scholar

[6] J.W. Slot and H. J. Geuze: J. Cell Biol. Vol. 90 (1981), p.533.

Google Scholar

[7] H. J. Geuze and J.W. Slot: Eur. J. Cell Biol. Vol. 38 (1985), p.87.

Google Scholar

[8] Y.W. Tan, X.H. Dai, Y.F. Li, and D.B. Zhu: J. Mater. Chem. Vol. 13 (2003), p.1069.

Google Scholar

[9] G. Carotenuto and L. Nicolais: J. Mater. Chem. Vol. 13 (2003), p.1038.

Google Scholar

[10] M. Brust, M Walker, D. Bethell, D.J. Schriffrin and R. Whyman: J. Chem Soc., Chem. Commun. Vol. 15 (1994), p.801.

Google Scholar

[11] M. Faraday: Philos. Trans. Roy. Soc. London Vol. 147 (1857), p.145.

Google Scholar

[12] J. Moreland and J.W. Ekin: J. Appl. Phys Vol. 58 (1985), p.3888.

Google Scholar

[13] F. Ott and J. Lunney: Europhysics News (January/February 1998), p.13.

Google Scholar

[14] G. Mie: Annalen der Physik Vol. 25 (1908), p.377.

Google Scholar

[15] S. Huang, K. Minami, H. Sakaue, S. Shingubara and T. Takahagi: J. Appl. Phys. Vol. 92 (2002), p.7486.

Google Scholar

[16] G.X. Ritter and J. N Wilson: Handbook of Computer Vision Algorithms in Image Algebra (CRC Press, Boca Raton, Florida, USA 1996).

Google Scholar

[17] A. Yla-Jaaski and N. Kiryati, IEEE Trans. Pattern Anal. Machine Intell. Vol. 14 (1992) p.496.

Google Scholar

[18] R. Landauer: IBM J. Res. Dev. Vol. 1 (1957), p.223.

Google Scholar

[19] R. Landauer: Phil. Mag. Vol. 21 (1970), p.863.

Google Scholar

[20] R. Thouless: Phys Rev. Lett. Vol. 39 (1977), p.1167.

Google Scholar

[21] A. Wlasenko and P. Grütter: Rev. Sci. Instrum. Vol. 73 (2002), p.3324.

Google Scholar

[22] N. Nilius, T.M. Wallis and W. Ho: Science Vol. 297 (2002), p.1853.

Google Scholar

[23] N. Agraït, A.L. Yeyati and J. M. van Ruitenbeek: Physics Reports Vol. 377 (2003), p.81.

Google Scholar

[24] K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, and O.D. Velev: Science Vol. 294 (2001), p.1082.

Google Scholar

[25] K.H. Bhatt and O.D. Velev: Langmuir Vol. 20 (2004), p.467.

Google Scholar

[26] S.I. Khondaker and Z. Yao: Appl. Phys. Lett. Vol. 81 (2002), p.4613.

Google Scholar

[27] S.I. Khondaker, Z. Yao, L. Cheng, J.C. Henderson, Y. Yao and J.M. Tour: Appl. Phys. Lett. Vol. 85 (2004), p.645.

Google Scholar

[28] S.I. Khondaker: IEE Proc. -Circuits Devices Syst. Vol. 151 (2004), p.457.

Google Scholar