Modeling the Effect of External Electric Fields on the Dynamics of a Confined Water Nano-Droplet

Article Preview

Abstract:

The effects of the application of constant electric fields on the dynamics of a confined water droplet between two different surfaces are investigated, by using a molecular dynamics method. It is found that the water molecules responded to the electric field, which partially depends on the wettability of the different surfaces. The results reveal that the application of external electric fields causes to create extra pressure on the surfaces, which are theoretically justified. The induced pressure could be experienced by multilayer nano-filters, which are used in desalination processes, with the aid of an external electric field, and may reduce the water filters shelf life.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-96

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society 130(18) (2008) 5856-5857.

DOI: 10.1021/ja800745y

Google Scholar

[2] A. Lohrasebi, and M. Feshanjerdi, A rotary nano ion pump: a molecular dynamics study. J. mol. model. 18(9) (2012) 4191-4197.

DOI: 10.1007/s00894-012-1403-6

Google Scholar

[3] D. Cohen-Tanugi, and J.C. Grossman, Water desalination across nanoporous graphene. Nano letters 12 (2012) 3602-3608.

DOI: 10.1021/nl3012853

Google Scholar

[4] S. Kar, R.C. Bindal, and P.K. Tewari, Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7 (2012) 385–389.

DOI: 10.1016/j.nantod.2012.09.002

Google Scholar

[5] A. Lohrasebi, and S. Rikhtehgaran, Ion separation and water purification by applying external electric field on porous graphene membrane, Nano Research 11 (2018) 2229-2236.

DOI: 10.1007/s12274-017-1842-6

Google Scholar

[6] S. Rikhtehgaran, and A. Lohrasebi, Multilayer Nanoporous Graphene as a Water Purification Membrane, J. Nanosci. Nanotechnol 18(8) (2018) 5799-5803.

DOI: 10.1166/jnn.2018.15467

Google Scholar

[7] F. Song, L. Ma, J. Fan, Q. Chen, L. Zhang, and B.Q. Li, Wetting Behaviors of a Nano-Droplet on a Rough Solid Substrate under Perpendicular Electric Field, Nanomaterial 8(5) (2018) 340.

DOI: 10.3390/nano8050340

Google Scholar

[8] M. Kargar, and A. Lohrasebi, Deformation of water nano-droplets on graphene under the influence of constant and alternative electric fields, Phys. Chem. Chem. Phys.19 (2017) 26833-26838.

DOI: 10.1039/c7cp04433j

Google Scholar

[9] Q. Li, J. Song, F. Besenbacher, and M. Dong, Two-Dimensional Material Confined Water, Acc. Chem. Res. 48(1) (2015) 119–127.

DOI: 10.1021/ar500306w

Google Scholar

[10] M. Kargar, A. Lohrasebi, Water flow modeling through a graphene-based nanochannel: theory and simulation,  Phys.Chem.Chem.Phys. 21 (2019) 3304.

DOI: 10.1039/c8cp06839a

Google Scholar

[11] J. Carrasco, A. Hodgson, and A. Michaelides, A molecular perspective of water at metal interfaces, Nature materials 11 (2012) 667-674.

DOI: 10.1038/nmat3354

Google Scholar

[12] G.X. Nie, J.Y. Huang, and J.P. Huang, Melting–Freezing Transition of Monolayer Water Confined by Phosphorene Plates, The Journal of Physical Chemistry B120(34) (2016) 9011-9018.

DOI: 10.1021/acs.jpcb.6b02473

Google Scholar

[13] A. Lohrasebi, and T. Koslowski, Modeling water purification by an aquaporin-inspired graphene-based nano-channel, Journal of Molecular Modeling 25 (2019) 280.

DOI: 10.1007/s00894-019-4160-y

Google Scholar

[14] X. Zhou, Y. Duan, L. Wang, S. Liu, T. Li, Y. Li, and H. Li, Layering of confined water between two graphene sheets and its liquid–liquid transition, Chinese Physics B 26(10) (2017) 106401.

DOI: 10.1088/1674-1056/26/10/106401

Google Scholar

[15] L.T. Corson, C. Tsakonas, B.R. Duffy, N.J. Mottram, I.C. Sage, C.V. Brown, and S.K. Wilson, Deformation of a nearly-hemispherical conducting drop due to an electric field: theory and experiment, Physics of Fluids 26 (2014) 122106.

DOI: 10.1063/1.4903223

Google Scholar

[16] F. Song, B. Li, and Y. Li, Dynamic spreading of a nanosized droplet on a solid in an electric field, Phys. Chem. Chem. Phys. 17 (2015) 5543-5546.

DOI: 10.1039/c4cp04913f

Google Scholar

[17] J. Zhu, Y. Lan, H. Du, Y. Zhang, and J. Su, Tuning water transport through nanochannels by changing the direction of an external electric field, Phys. Chem. Chem. Phys. 18 (2016) 17991-17996.

DOI: 10.1039/c6cp00610h

Google Scholar

[18] H. Ren, L. Zhang, X. Li, Y. Li, W. Wu, and H. Li, Interfacial structure and wetting properties of water droplets on graphene under a static electric field, Phys. Chem. Chem. Phys. 17 (2015) 23460-23467.

DOI: 10.1039/c5cp04205d

Google Scholar

[19] F. Khasheii, M. Kargar, and A. Lohrasebi, Influence of electric fields on the efficiency of multilayer graphene membrane, J. Mol. Model. 24(9) (2018) 241.

DOI: 10.1007/s00894-018-3774-9

Google Scholar

[20] G. Nagy, E. Guàrdia, and M.C. Gordillo, Molecular dynamics simulation of liquid water confined inside graphite channels: dielectric and dynamical properties, Journal of physical chemistry B 110 (2006) 23987-23994.

DOI: 10.1021/jp0647277

Google Scholar

[21] M.S.H. Al-Furjan, H. Safarpour, M. Habibi, M. Safarpour, and A. Tounsi, A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method, Engineering with Computers (2020). https://doi.org/10.1007/s00366-020-01088-7.

DOI: 10.1007/s00366-020-01088-7

Google Scholar

[22] B. Karami, D. Shahsavari, M. Janghorban, and A. Tounsi, Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, International Journal of Mechanical Sciences 156 (2019) 94–105.

DOI: 10.1016/j.ijmecsci.2019.03.036

Google Scholar

[23] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of computational physics 117 (1995) 1-19.

DOI: 10.1006/jcph.1995.1039

Google Scholar

[24] W.L. Jorgensen, J. Chandrasekhar, and J.D. Madura, Comparison of simple potential functions for simulating liquid water, The Journal of chemical physics 79 (1983) 926-935.

DOI: 10.1063/1.445869

Google Scholar

[25] W. Zhang, C. Ye, L. Hong, Z. Yang, and R. Zhou, Molecular Structure and Dynamics of Water on Pristine and Strained Phosphorene: Wetting and Diffusion at Nanoscale, Sci. Rep. 6 (2016) 38327.

DOI: 10.1038/srep38327

Google Scholar

[26] Y. Wu, L.K. Wagner, and N.R. Aluru, Hexagonal boron nitride and water interaction parameters, The Journal of Chemical Physics 144 (2016) 164118.

DOI: 10.1063/1.4947094

Google Scholar

[27] F. Kang-Qi, J. Jian-Yuan, Z. Ying-Min, and Z. Xiu-Yan, Adhesive contact: from atomistic model to continuum model, Chinese Physics B 20(4) (2011) 043401.

DOI: 10.1088/1674-1056/20/4/043401

Google Scholar

[28] C. Argento, and R. French, Parametric tip model and force–distance relation for Hamaker constant determination from atomic force microscopy, Journal of Applied Physics 80 (1996) 6081-6090.

DOI: 10.1063/1.363680

Google Scholar

[29] T. Wen-Chao, W. Lin-Bin, J. Jian-Yuan, Casimir force, Hamaker force, stiction and snap-back, Acta Physica Sinica 59(2) (2010) 01175.

DOI: 10.7498/aps.59.1175

Google Scholar

[30] D. Maugis, Adhesion of spheres: The JKR-DMT transition using a dugdale model, Journal of colloid and interface science 150 (1992) 243-269.

DOI: 10.1016/0021-9797(92)90285-t

Google Scholar