Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model

Article Preview

Abstract:

This paper presents a novel numerical procedure to predict nonlinear buckling and postbuckling stability of imperfect clamped–clamped single walled carbon nanotube (SWCNT) surrounded by nonlinear elastic foundation. Nanoscale effect of CNTs is included by using energy-equivalent model (EEM) which transferring the chemical energy between carbon atoms to mechanical strain energy. Young’s modulus and Poisson’s ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force constants by using energy-equivalent model (EEM). Nonlinear Euler-Bernoulli assumptions are proposed considering mid-plane stretching to exhibit a large deformation and a small strain. To simulate the interaction of CNTs with the surrounding elastic medium, nonlinear elastic foundation with cubic nonlinearity and shearing layer are employed. The governing nonlinear integro-partial-differential equations are derived in terms of only the lateral displacement. The modified differential quadrature method (DQM) is exploited to obtain numerical results of the nonlinear governing equations. The static problem is solved for critical buckling loads and the postbuckling deformation as a function of applied axial load, curved amplitude, CNT length, and orientations. Numerical results show that the effects of chirality angle and curved amplitude on static response of armchair and zigzag CNTs are significant. This model is helpful especially in mechanical design of NEMS manufactured from CNTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-157

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] S., Iijima, Helical microtubules of graphitic carbon,. Nature, 354(1991), pp.56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] M. A., Eltaher, & M. A., Agwa, Analysis of Size-dependent Mechanical Properties of CNTs Mass Sensor Using Energy Equivalent Model,. Sensors and Actuators A, 246, (2016), p.9–17.

DOI: 10.1016/j.sna.2016.05.009

Google Scholar

[3] M. A., Eltaher, S., El-Borgi & J.N., Reddy Nonlinear Analysis of Size-dependent and Material-Dependent Nonlocal CNTs,. Composite Structure, 153, (2016), p.902–913.

DOI: 10.1016/j.compstruct.2016.07.013

Google Scholar

[4] T., Yamabe, Recent development of carbon nanotube,, Synthetic Metals, 70(1), (1995), pp.1511-1518.

DOI: 10.1016/0379-6779(94)02939-v

Google Scholar

[5] Y., Wu, X., Zhang, A. Y. T., Leung, & W., Zhong, An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes,, Thin-Walled Structures, 44(6) , (2006), pp.667-676.

DOI: 10.1016/j.tws.2006.05.003

Google Scholar

[6] V. M., Harik, Mechanics of carbon nanotubes: applicability of the continuum-beam models,, Computational materials science, 24(3) , (2002), pp.328-342.

DOI: 10.1016/s0927-0256(01)00255-5

Google Scholar

[7] L., Nasdala, A., Kempe, & R., Rolfes, Are finite elements appropriate for use in molecular dynamic simulations?,, Composites Science and Technology, 72(9) , (2012), pp.989-1000.

DOI: 10.1016/j.compscitech.2012.03.008

Google Scholar

[8] C., Li, & T. W., Chou, A structural mechanics approach for the analysis of carbon nanotubes,, International Journal of Solids and Structures, 40(10), (2003), pp.2487-2499.

DOI: 10.1016/s0020-7683(03)00056-8

Google Scholar

[9] M., Amabili, Non-linear vibrations of doubly curved shallow shells,, International Journal of Non-Linear Mechanics, 40(5), (2005), pp.683-710.

DOI: 10.1016/j.ijnonlinmec.2004.08.007

Google Scholar

[10] A. Y. T., Leung, X., Guo, X. Q., He, & S. Kitipornchai, A continuum model for zigzag single-walled carbon nanotubes,, Applied Physics Letters, 86(8), (2005), p.083110.

DOI: 10.1063/1.1869543

Google Scholar

[11] J. Y., Hsieh, J. M., Lu, M. Y., Huang, & C. C., Hwang, Theoretical variations in the Young's modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study,, Nanotechnology, 17(15) , (2006), p.3920.

DOI: 10.1088/0957-4484/17/15/051

Google Scholar

[12] J., Cai, C. Y., Wang, T., Yu, & S., Yu, Wall thickness of single-walled carbon nanotubes and its Young's modulus,, Physica Scripta, 79(2) , (2009), p.025702.

DOI: 10.1088/0031-8949/79/02/025702

Google Scholar

[13] M. M., Shokrieh, & R., Rafiee, Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach,, Materials & Design, 31(2), (2010), pp.790-795.

DOI: 10.1016/j.matdes.2009.07.058

Google Scholar

[14] H. M., Shodja, & M. R., Delfani, A novel nonlinear constitutive relation for graphene and its consequence for developing closed-form expressions for Young's modulus and critical buckling strain of single-walled carbon nanotubes,,Acta mechanica, 222(1-2) , (2011), pp.91-101.

DOI: 10.1007/s00707-011-0528-5

Google Scholar

[15] S. H., Tzeng, & J. L., Tsai, Characterizing the Mechanical Properties of Graphene and Single Walled Carbon Nanotubes,, Journal of Mechanics, 27(4), (2011) , pp.461-467.

DOI: 10.1017/jmech.2011.49

Google Scholar

[16] U. A., Joshi, S. C., Sharma, & S. P., Harsha, A multiscale approach for estimating the chirality effects in carbon nanotube reinforced composites,, Physica E: Low-dimensional Systems and Nanostructures, 45, (2012), pp.28-35.

DOI: 10.1016/j.physe.2012.06.012

Google Scholar

[17] M. Q., Le, Prediction of Young's modulus of hexagonal monolayer sheets based on molecular mechanics,, International Journal of Mechanics and Materials in Design, 11(1) , (2015), pp.15-24.

DOI: 10.1007/s10999-014-9271-0

Google Scholar

[18] G. Q., Han, J. H., Shen, X. X., Ye, B., Chen, Imai, H., Kondoh, K., & Du, W. B., The influence of CNTs on the microstructure and ductility of CNT/Mg composites,, Materials Letters, 181, (2016), pp.300-304.

DOI: 10.1016/j.matlet.2016.06.021

Google Scholar

[19] M., Mohammadimehr, & S. Alimirzaei, Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM,, Structural Engineering and Mechanics, 59(3), (2016), pp.431-454.

DOI: 10.12989/sem.2016.59.3.431

Google Scholar

[20] D., Qian, E. C., Dickey, R., Andrews, & T., Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,, Applied physics letters, 76(20), (2000), pp.2868-2870.

DOI: 10.1063/1.126500

Google Scholar

[21] Z. L., Wang, P., Poncharal, & W. A., De Heer, Nanomeasurements of individual carbon nanotubes by in situ TEM,, Pure and applied chemistry, 72(1-2) , (2000), pp.209-219.

DOI: 10.1351/pac200072010209

Google Scholar

[22] Y., Mikata, Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube,, Acta Mechanica, 190(1-4), (2007), pp.133-150.

DOI: 10.1007/s00707-006-0402-z

Google Scholar

[23] F. N., Mayoof, & M. A. Hawwa, Chaotic behavior of a curved carbon nanotube under harmonic excitation,, Chaos, Solitons & Fractals, 42(3), (2009), pp.1860-1867.

DOI: 10.1016/j.chaos.2009.03.104

Google Scholar

[24] K.,Mezghani, M., Farooqui, S., Furquan, & M., Atieh, Influence of carbon nanotube (CNT) on the mechanical properties of LLDPE/CNT nanocomposite fibers,, Materials Letters, 65(23) , (2011), pp.3633-3635.

DOI: 10.1016/j.matlet.2011.08.002

Google Scholar

[25] B., Wang, Z., Deng, K., Zhang, & J., Zhou, Dynamic analysis of embedded curved double-walled carbon nanotubes based on nonlocal Euler-Bernoulli Beam theory,, Multidiscipline Modeling in Materials and Structures, 8(4), (2012), pp.432-453.

DOI: 10.1108/15736101211281470

Google Scholar

[26] B.,Wang, Z. C., Deng, & K., Zhang, Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory,, Applied Mathematics and Mechanics, 34, (2013), pp.269-280.

DOI: 10.1007/s10483-013-1669-8

Google Scholar

[27] C., Thongyothee, & S., Chucheepsakul, Postbuckling behaviors of nanorods including the effects of nonlocal elasticity theory and surface stress,, Journal of Applied Physics, 114(24) , (2013), p.243507.

DOI: 10.1063/1.4829896

Google Scholar

[28] F., Alijani, & M., Amabili, Theory and experiments for nonlinear vibrations of imperfect rectangular plates with free edges,, Journal of Sound and Vibration, 332(14), (2013), pp.3564-3588.

DOI: 10.1016/j.jsv.2013.02.015

Google Scholar

[29] H., Mohammadi, M., Mahzoon, M., Mohammadi, & M., Mohammadi, Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation,, Nonlinear Dynamics, 76(4) , (2014), pp.2005-2016.

DOI: 10.1007/s11071-014-1264-x

Google Scholar

[30] M. E., Khater, M. A., Eltaher, E., Abdel-Rahman, & M., Yavuz, Surface and thermal load effects on the buckling of curved nanowires,, Engineering Science and Technology, an International Journal, 17(4) , (2014), pp.279-283.

DOI: 10.1016/j.jestch.2014.07.003

Google Scholar

[31] M. A., Eltaher, A. M., Abdraboh, & K. H. Almitani, Resonance frequencies of size dependent perforated nonlocal nanobeam,, Microsystem Technologies, 24, (2018), p.3925–3937.

DOI: 10.1007/s00542-018-3910-6

Google Scholar

[32] A., Zemri, M. S. A., Houari, A. A., Bousahla, & A.Tounsi, A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory,, Structural Engineering and Mechanics, 54(4), (2015), pp.693-710.

DOI: 10.12989/sem.2015.54.4.693

Google Scholar

[33] F. L., Chaht, A., Kaci, M. S. A., Houari, Tounsi, O. A., Bég, & S. R. Mahmoud, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect,, Steel and Composite Structures, 18(2), (2015), pp.425-442.

DOI: 10.12989/scs.2015.18.2.425

Google Scholar

[34] K. S., Al-Basyouni, A., Tounsi, & S. R. Mahmoud, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position,, Composite Structures, 125, (2015), pp.621-630.

DOI: 10.1016/j.compstruct.2014.12.070

Google Scholar

[35] I., Belkorissat, M. S. A., Houari, A., Tounsi, E. A., Bedia, & S. R. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model,, Steel Composite Structure, 18(4), (2015), pp.1063-1081.

DOI: 10.12989/scs.2015.18.4.1063

Google Scholar

[36] F., Bounouara, K. H., Benrahou, I., Belkorissat, & A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation,, Steel and Composite Structures, 20(2), (2016), pp.227-249.

DOI: 10.12989/scs.2016.20.2.227

Google Scholar

[37] M., Ahouel, M. S. A., Houari, E. A., Bedia, & A. Tounsi, Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept,, Steel and Composite Structures, 20(5), (2016), pp.963-981.

DOI: 10.12989/scs.2016.20.5.963

Google Scholar

[38] K., Bouafia, A., Kaci, M. S. A., Houari, A., Benzair, & A. Tounsi, A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams,, Smart Structures and Systems, 19(2), (2017), pp.115-126.

DOI: 10.12989/sss.2017.19.2.115

Google Scholar

[39] A., Mouffoki, E. A., Bedia, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory,, Smart Structures and Systems, 20(3), (2017), 369-383.

Google Scholar

[40] H., Khetir, M. B., Bouiadjra, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates,, Structural Engineering and Mechanics, 64(4), (2017), pp.391-402.

Google Scholar

[41] A., Besseghier, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory,, Smart Structures and Systems, 19(6), (2017), pp.601-614.

Google Scholar

[42] B., Karami, M., Janghorban, & A. Tounsi, Effects of triaxial magnetic field on the anisotropic nanoplates,, Steel and Composite Structures, 25(3), (2017), pp.361-374.

Google Scholar

[43] A., Bouadi, A. A., Bousahla, M. S. A., Houari, H., Heireche, & A. Tounsi, A new nonlocal HSDT for analysis of stability of single layer graphene sheet,, Advances in Nano Research, 6(2), (2018), pp.147-162.

Google Scholar

[44] B., Karami, M., Janghorban, & A. Tounsi, Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory,, Thin-Walled Structures, 129, (2018), pp.251-264.

DOI: 10.1016/j.tws.2018.02.025

Google Scholar

[45] B., Karami, M., Janghorban, & A. Tounsi,, Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles,, Steel and Composite Structures, 27(2), (2018), pp.201-216.

Google Scholar

[46] H., Baghdadi, A., Tounsi, M., Zidour & A., Benzair, Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory,, Fullerenes, Nanotubes and Carbon Nanostructures, 23(3), (2014), pp.266-272.

DOI: 10.1080/1536383x.2013.787605

Google Scholar

[47] S., Benguediab, A., Tounsi, M., Zidour, & A., Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes,, Composites Part B: Engineering, 57, (2014), pp.21-24.

DOI: 10.1016/j.compositesb.2013.08.020

Google Scholar

[48] A., Semmah, A., Tounsi, M., Zidour, H., Heireche, & M., Naceri, Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory,, Fullerenes, Nanotubes and Carbon Nanostructures, 23(6), (2015), pp.518-522.

DOI: 10.1080/1536383x.2012.749457

Google Scholar

[49] W. A., Bedia, A., Benzair, A., Semmah, A., Tounsi, & S. R., Mahmoud, On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity,, Brazilian Journal of Physics, 45(2), (2015), pp.225-233.

DOI: 10.1007/s13538-015-0306-2

Google Scholar

[50] A., Besseghier, H., Heireche, Bousahla, A. A., Tounsi, A., & Benzair, A., Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix,, Advances in Nano Research, 3(1), (2015), p.029.

DOI: 10.12989/anr.2015.3.1.029

Google Scholar

[51] B., Kadari, A., Bessaim, A., Tounsi, H., Heireche, A. A., Bousahla, &, M. S. A., Houari Buckling analysis of orthotropic nanoscale plates resting on elastic foundations,. In Journal of Nano Research, 55, (2018), pp.42-56.

DOI: 10.4028/www.scientific.net/jnanor.55.42

Google Scholar

[52] R., Hamza-Cherif, M., Meradjah, M., Zidour, A., Tounsi, S., Belmahi, & Bensattalah, T., Vibration analysis of nano beam using differential transform method including thermal effect,, In Journal of Nano Research 54, (2018), pp.1-14.

DOI: 10.4028/www.scientific.net/jnanor.54.1

Google Scholar

[53] H., Bellifa, K. H., Benrahou, A. A., Bousahla, A., Tounsi, & S. R. Mahmoud, A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams,, Structural Engineering and Mechanics, 62(6), (2017), pp.695-702.

Google Scholar

[54] A., Kaci, M. S. A., Houari, A. A., Bousahla, A., Tounsi, & S. R. Mahmoud, Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory,, Structural Engineering and Mechanics, 65(5), (2018), pp.621-631.

Google Scholar

[55] Y., Mokhtar, H., Heireche, A. A., Bousahla, M. S. A., Houari, A., Tounsi, & S. R. Mahmoud, A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory,, Smart Structures and Systems, 21(4), (2018), pp.397-405.

Google Scholar

[56] M., Yazid, H., Heireche, A., Tounsi, A. A., Bousahla, & M. S. A. Houari, A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium,, Smart Structures and Systems, 21(1), (2018), pp.15-25.

DOI: 10.2174/2405461501666161130121643

Google Scholar

[57] D., Iesan, & R., Quintanilla, Strain gradient theory of chiral Cosserat thermoelasticity without energy dissipation,, Journal of Mathematical Analysis and Applications, 437(2) , (2016), pp.1219-1235.

DOI: 10.1016/j.jmaa.2016.01.058

Google Scholar

[58] J., Qin, D., Liu, N., Zhao, C., Shi, Liu, E. Z., He, F. ... & He, C., Fabrication of Sn-core/CNT-shell nanocable anchored interconnected carbon networks as anode material for lithium ion batteries,, Materials Letters, 212, (2018), pp.94-97.

DOI: 10.1016/j.matlet.2017.10.011

Google Scholar

[59] S.A.H., Kordkheili, T., Mousavi, H., Bahai, Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory,, Structural Engineering and Mechanics, 66(5), (2018), pp.621-629.

Google Scholar

[60] M., Amabili, Nonlinear vibrations and stability of laminated shells using a modified first-order shear deformation theory,, European Journal of Mechanics-A/Solids, 68, (2018), pp.75-87.

DOI: 10.1016/j.euromechsol.2017.11.005

Google Scholar

[61] N., Mohamed, M. A., Eltaher, S. A., Mohamed, & L. F., Seddek, Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations,, International Journal of Non-Linear Mechanics, 101, (2018), pp.157-173.

DOI: 10.1016/j.ijnonlinmec.2018.02.014

Google Scholar

[62] S. A., Emam, M. A., Eltaher, M. E., Khater, & W. S., Abdalla, Postbuckling and Free Vibration of Multilayer Imperfect Nanobeams under a Pre-Stress Load,, Applied Sciences, 8(11) , (2018), p.2238.

DOI: 10.3390/app8112238

Google Scholar

[63] M. A., Eltaher, M., Agwa, & A., Kabeel, Vibration Analysis of Material Size-Dependent CNTs Using Energy Equivalent Model,, Journal of Applied and Computational Mechanics, 4(2), (2018), pp.75-86.

Google Scholar

[64] A. K., Rappé, C. J., Casewit, K. S., Colwell, W. A., Goddard Iii, & W. M., Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,, Journal of the American chemical society, 114(25) , (1992), pp.10024-10035.

DOI: 10.1021/ja00051a040

Google Scholar

[65] R., Bellman, & J., Casti, Differential quadrature and long-term integration,, Journal of Mathematical Analysis and Applications, 34(2) , (1971), pp.235-238.

DOI: 10.1016/0022-247x(71)90110-7

Google Scholar

[66] C., Shu, & B. E., Richards, Application of generalized differential quadrature to solve two‐dimensional incompressible Navier‐Stokes equations,, International Journal for Numerical Methods in Fluids, 15(7), (1992), pp.791-798.

DOI: 10.1002/fld.1650150704

Google Scholar

[67] A. H., Khater, R. S., Temsah, & M. M., Hassan, A Chebyshev spectral collocation method for solving Burgers'-type equations,, Journal of Computational and Applied Mathematics, 222(2), (2008), pp.333-350.

DOI: 10.1016/j.cam.2007.11.007

Google Scholar

[68] R. C., Mittal, & R., Jiwari, A differential quadrature method for numerical solutions of Burgers'-type equations,, International Journal of Numerical Methods for Heat & Fluid Flow, 22(7) , (2012), pp.880-895.

DOI: 10.1108/09615531211255761

Google Scholar

[69] J. R., Quan, & C. T., Chang, New insights in solving distributed system equations by the quadrature method—I. Analysis,. Computers & chemical engineering, 13(7), (1989), pp.779-788.

DOI: 10.1016/0098-1354(89)85051-3

Google Scholar

[70] A. H., Nayfeh, & S. A., Emam, Exact solution and stability of postbuckling configurations of beams,, Nonlinear Dynamics, 54(4), (2008), pp.395-408.

DOI: 10.1007/s11071-008-9338-2

Google Scholar

[71] S. A., Emam, A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams,, Composite Structures, 90(2), (2009), pp.247-253.

DOI: 10.1016/j.compstruct.2009.03.020

Google Scholar

[72] L. S., Srubshchik Precritical equilibrium of a thin shallow shell of revolution and its stability,, Journal of Applied Mathematics and Mechanics, 44(2), (1980), pp.229-235.

DOI: 10.1016/0021-8928(80)90152-5

Google Scholar