Nanocarriers for Delivery of Herbal Based Drugs in Breast Cancer - An Overview

Article Preview

Abstract:

Breast cancer is the second leading cause of cancer death in women all over the world. Despite advanced treatment modalities, the systemic toxicity remains a major side effect resulting into patient morbidity and mortality. Recently, natural products are being targeted for drug discovery because of their major role in cancer prevention and treatment. Plants have been the main source of natural compounds that are being used in medicine. However, most of the herbal bioactives are hydrophobic in nature resulting into their limited bioavailability and in turn their therapeutic efficacy. To overcome this problem, different nanocarriers such as nanoparticles, nanocapsules, liposomes, quantum dots, phytosomes, dendrimers and nanoemulsions have been conjugated with anticancer herbal bioactives. Such nanochemotherapeutic agents exhibit increased bioavaibility, enhanced pharmacological activity and stability with reduced systemic toxicity. While majority of the reviews focus upon herbal loaded nanoformulations for various biological applications, this report is an attempt to particularly highlight the potential of nanotechnology in the delivery of herbal bioactives for breast cancer management.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-40

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] D. Carter, New global survey shows an increasing cancer burden, Am. J. Nurs. 114(3) (2014) 17.

Google Scholar

[2] R. Siegel, J. Ma, Z. Zou, A. Jemal, Cancer statistics, 2014, CA Cancer J. Clin., 64(1) (2014) 9-29.

DOI: 10.3322/caac.21208

Google Scholar

[3] N. Murthy, U. Agarwal, K. Chaudhry, S. Saxena, A study on time trends in incidence of breast cancer –Indian scenario, Eur. J. Cancer Care, 16 (2007) 185-186.

DOI: 10.1111/j.1365-2354.2006.00761.x

Google Scholar

[4] A. Khokhar, Breast Cancer in India: Where do we stand and where do we go?, Asian Pacific J Cancer Prev, 13(10) (2012) 4861-4866.

DOI: 10.7314/apjcp.2012.13.10.4861

Google Scholar

[5] H. Boon, M. Stewart, M. A. Kennard, R. Gray, C. Sawka, J. B. Brown, C. McWilliam, A. Gavin, R. A. Baron, D. Aaron, T. Haines-Kamka, Use of complementary/alternative medicine by breast cancer survivors in Ontario: prevalence and perceptions, J. Clin. Oncol., 18(13) (2000).

DOI: 10.1200/jco.2000.18.13.2515

Google Scholar

[6] M. Zhang, X. Liu, J. Li, L. He, D. Tripathy, Chinese medicinal herbs to treat the side-effects of chemotherapy in breast cancer patients, Cochrane Database Syst. Rev. (2) (2007) CD004921.

DOI: 10.1002/14651858.cd004921.pub2

Google Scholar

[7] G. S. Liao, M. K. Apaya, L. F. Shyur, Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy, Evid Based Complement Alternat Med. 2013 (2013) 437948.

DOI: 10.1155/2013/437948

Google Scholar

[8] C. M. Kaefer, J. A. Milner, Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Chapter 17 Herbs and Spices in Cancer Prevention and Treatment.

DOI: 10.1201/b10787-18

Google Scholar

[9] S. J. Koppikar, A. S. Choudhari, S. A. Suryavanshi, S. Kumari, S. Chattopadhyay, R. Kaul-Ghanekar, Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential, BMC Cancer, 10 (2010).

DOI: 10.1186/1471-2407-10-210

Google Scholar

[10] A. S. Choudhari, S. A. Snehal, R. Kaul-Ghanekar, The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and apoptosis in HeLa (HPV-18 Positive), Plos One, (2013).

DOI: 10.1371/journal.pone.0070127

Google Scholar

[11] S. Suryavanshi, A. Choudhari, R. Deshpande, O. Kulkarni, R. Kaul- Ghanekar, Analyzing the antioxidant potential of aqueous and ethanolic preparations of a herbal composition (HC9) and evaluating their cytotoxic activity in breast cancer cell lines, Biotechnol. Bioinf. Bioeng., 1(4) (2011).

Google Scholar

[12] W. Tan, J. Lu, M. Huang, Y. Li, M. Chen, G. Wu, J. Gong, Z. Zhong, Z. Xu, Y. Dang, J. Guo, X. Chen, Y. Wang. Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med., 6(1) (2011) 27.

DOI: 10.1186/1749-8546-6-27

Google Scholar

[13] V. A. Bhattaram, U. Graefe, C. Kohlert, M. Veit, H. Derendorf, Pharmacokinetics and bioavailability of herbal medicinal products, Phytomedicine, 9 Suppl 3: (2002) 1-33.

DOI: 10.1078/1433-187x-00210

Google Scholar

[14] E. A. Abourashed, Bioavailability of plant-derived antioxidants, Antioxidants, 2 (2013) 309-325.

DOI: 10.3390/antiox2040309

Google Scholar

[15] C. Jantarat, Bioavailability enhancement techniques of herbal medicine: a case example of curcumin, Int. J. Pharm. Pharm. Sci., 5(1) (2013) 493-500.

Google Scholar

[16] K. Kesarwani, R. Gupta, A. Mukerjee, Bioavailability enhancers of herbal origin: An overview, Asian Pac. J. Trop. Biomed., 3(4) (2013) 253-66.

Google Scholar

[17] S. S. Bhadoriya, A. Mangal, N. Madoriya, P. Dixit, Bioavailability and bioactivity enhancement of herbal drugs by Nanotechnology,: a review, JCPR, 8(1) (2011) 1-7.

Google Scholar

[18] Muqbil, A. Masood, F. H. Sarkar, R. M. Mohammad, A. S. Azmi, Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents, Cancers (Basel), 3(1) (2011) 428-45.

DOI: 10.3390/cancers3010428

Google Scholar

[19] S. Medhe, P. Bansal, S. K. Roy, M. G. R. Rajan, M. M. Srivastava, Combination and nanotech enhancement in anti-breast cancer efficacy: dietary chemopreventing agent, BioNanoSci. 3 (2013) 295–301.

DOI: 10.1007/s12668-013-0093-6

Google Scholar

[20] B. V. Bonifácio, P. B. Silva, M. A. Ramos, K. M. Negri, T. M., Bauab, M. Chorilli, Nanotechnology-based drug delivery systems and herbal medicines: a review, Int. J. Nanomedicine., 9 (2014) 1-15.

DOI: 10.2147/ijn.s52634

Google Scholar

[21] R. K. Thapa, G. M. Khan, K. Parajuli-Baral, P. Thapa, Herbal medicine incorporated nanoparticles: advancements in herbal treatment, Asian Journal of Biomedical and Pharmaceutical Sciences, 3(24) (2013) 7-14.

Google Scholar

[22] M. Mathur, G. Vyas, Role of nanoparticles for production of smart herbal drug-an overview, Indian J. Nat. Prod. Resour. 4(4) (2013) 329-338.

Google Scholar

[23] M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, R. M. O'Regan, Emerging use of nanoparticles in diagnosis and treatment of breast cancer, Lancet Oncol., 7(8) (2006) 657-667.

DOI: 10.1016/s1470-2045(06)70793-8

Google Scholar

[24] S. R. Grobmyer, D. L. Morse, B. Fletcher, L. G. Gutwein, P. Sharma, V. Krishna, S. C. Frost, B. M. Moudgil, S. C. Brown, The promise of nanotechnology for solving clinical problems in breast cancer, J. Surg. Oncol., 103(4) (2011) 317-25.

DOI: 10.1002/jso.21698

Google Scholar

[25] R. Chang, Bioactive polysaccharides from traditional Chinese medicine herbs as anticancer adjuvants, The Journal of Alternative and Complementary Medicine, 8(5) (2002) 559-565.

DOI: 10.1089/107555302320825066

Google Scholar

[26] Abirami, S. M. Halith, K. K. Pillai, C. Anbalagan, Herbal nanoparticle for anticancer potential- a review, World Journal of Pharmacy and Pharmaceutical Sciences, 3(8) (2014) 2123-2132.

Google Scholar

[27] S. Dev, P. Prabhakaran, L. Filgueira, K. S. Iyer, C. L. Raston, Microfluidic fabrication of cationic curcumin nanoparticles as an anti-cancer agent, Nanoscale, 4 (2012) 2575-2579.

DOI: 10.1039/c2nr11502f

Google Scholar

[28] D. Zucker, Y. Barenholz, Optimization of vincristine-topotecan combination-paving the way for improved chemotherapy regimens by nanoliposomes, J. Control Release, 146 (2010) 326-333.

DOI: 10.1016/j.jconrel.2010.05.024

Google Scholar

[29] Abe, N. Abgrall, H. Aihara, Y. Ajima, J. B. Albert, et al, The T2K experiment. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 659 (2011) 106-135.

DOI: 10.1016/j.nima.2010.02.164

Google Scholar

[30] F. Odeh, S. I. Ismail, R. Abu-Dahab, I. S. Mahmoud, A. Al Bawab, Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer, Drug Deliv., 19(8) (2012) 371-7.

DOI: 10.3109/10717544.2012.727500

Google Scholar

[31] N. Kontogiannopoulos, A. N. Assimopoulou, S. Hatziantoniou, K. Karatasos, C. Demetzos, V. P. Papageorgiou, Chimeric advanced drug delivery nano systems (chi-aDDnSs) for shikonin combining dendritic and liposomal technology, Int. J. Pharm., 422(1-2) (2012).

DOI: 10.1016/j.ijpharm.2011.09.031

Google Scholar

[32] X. Ma, J. Zhou, C. X. Zhang, X. Y. Li, N. Li, R. J. Ju, J. F. Shi, M. G. Sun, W. Y. Zhao, L. M. Mu, Y. Yan, W. L. Lu, Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes, Biomaterials, 34(18) (2013).

DOI: 10.1016/j.biomaterials.2013.02.066

Google Scholar

[33] N. Dadgar, S. E. Alavi, M. K. Esfahani, A. Akbarzadeh, Study of toxicity effect of pegylated nanoliposomal artemisinin on breast cancer cell line, Indian J. Clin. Biochem., 28(4) (2013) 410-2.

DOI: 10.1007/s12291-013-0306-3

Google Scholar

[34] Mei, Y. Zhang, Y. Zheng, G. Tian, C. Song, D. Yang, H. Chen, H. Sun, Y. Tian, K. Liu, Z. Li, L. Huang, A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment, Nanoscale Res. Lett., 4(12) (2009).

DOI: 10.1007/s11671-009-9431-6

Google Scholar

[35] V. Bhardwaj, D. D. Ankola, S. C. Gupta, M. Schneider, C. M. Lehr, M. N. V . Ravi Kumar, PLGA nanoparticles stabilized with cationic surfactant: safety studies and application in oral delivery of paclitaxel to treat chemical-induced breast cancer in rat, Pharmaceutical Research, 26(11) (2009).

DOI: 10.1007/s11095-009-9965-4

Google Scholar

[36] K. H. Min, K. Park, Y. S. Kim, S. M. Bae, S. Lee, H. G. Jo, R. W. Park, I. S. Kim, S. Y. Jeong, K. Kim, I. C. Kwon, Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release, 127(3) (2008).

DOI: 10.1016/j.jconrel.2008.01.013

Google Scholar

[37] V. Saxena, M. D. Hussain, Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer, Int. J. Nanomedicine., 7 (2012) 713–721.

DOI: 10.2147/ijn.s28745

Google Scholar

[38] Wang, S. Wang, R. Chen, Y. Wang, H. Li, Y. Wang, M. Chen, Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells, Journal of Nanomaterials, 2014 (2014) Article ID 903646.

DOI: 10.1155/2014/903646

Google Scholar

[39] Y. P. Fang, Y. K. Lin, Y. H. Su, J. Y. Fang, Tryptanthrin-loaded nanoparticles for delivery into cultured human breast cancer cells, MCF7: the effects of solid lipid/liquid lipid ratios in the inner core, Chem. Pharm. Bull., 59(2) (2011) 266-271.

DOI: 10.1248/cpb.59.266

Google Scholar

[40] Khoobchandani, A. Zambre, K. Katti, C. H. Lin, V. K. Kattesh, Green Nanotechnology from Brassicaceae: Development of Broccoli Phytochemicals–Encapsulated Gold Nanoparticles and Their Applications in Nanomedicine, International Journal of Green Nanotechnology, 1 (2013).

DOI: 10.1177/1943089213509474

Google Scholar

[41] U. K. Parida, B. K. Bindhani, P. Nayak, Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium cepa) Extract, World Journal of Nano Science and Engineering, 1 (2011) 93-98.

DOI: 10.4236/wjnse.2011.14015

Google Scholar

[42] F. Dilnawaz, A. Singh, C. Mohanty, S. K. Sahoo, Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy, Biomaterials, 31(13) (2010) 3694-706.

DOI: 10.1016/j.biomaterials.2010.01.057

Google Scholar

[43] D. Dorniani, M. Z. Bin Hussein, A. U. Kura, S. Fakurazi, A. H. Shaari, Z. Ahmad, Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery, Dovepress, 2012(7) (2012) 5745-5756.

DOI: 10.2147/ijn.s35746

Google Scholar

[44] Z. Ebrahimnezhad, N. Zarghami, M. Keyhani, S. Amirsaadat, A. Akbarzadeh, M. Rahmati, M. Z. Taheri, K. Nejati-Koshki, Inhibition of hTERT Gene Expression by Silibinin-Loaded PLGA-PEG-Fe3O4 in T47D Breast Cancer Cell Line, Bioimpacts, 3(2) (2013).

DOI: 10.15171/bi.2018.34

Google Scholar

[45] S. Sebak, M. Mirzaei, M. Malhotra, A. Kulamarva, S. Prakash, Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis, Int. J. Nanomedicine, 5 (2010).

DOI: 10.2147/ijn.s10443

Google Scholar

[46] K. D. Wani, R. Kitture, A. Ahmed, A. S. Choudhari, S. J. Koppikar, R Kaul-Ghanekar, Synthesis, characterization and in vitro study of Curcumin-functionalized Citric acid-Capped Magnetic (CCF) Nanoparticles as drug delivery agents in cancer. Journal of Bionanoscience 5 (2011).

DOI: 10.1166/jbns.2011.1041

Google Scholar

[47] K. D. Wani, B. S. Kadu, P. Gupta, A. V. Deore, R. Chikate, P. Poddar, S. Dhole, R. Kaul-Ghanekar, Synthesis, characterization and in vitro study of biocompatible Cinnamaldehyde functionalized magnetite nanoparticles (CPGF NPs) for hyperthermia and drug delivery applications in breast cancer. PLoS ONE 9(9) (2014).

DOI: 10.1371/journal.pone.0107315

Google Scholar

[48] W. D. Foulkes, Triple-negative breast cancer, N. Engl. J. Med., 363 (2010) 1938-(1948).

Google Scholar

[49] Safavy, K. P. Raisch, M. B. Khazaeli, D. J. Buchsbaum, J. A. Bonner, Paclitaxel derivatives for targeted therapy of cancer: toward the development of smart taxanes, J. Med. Chem., 42(23) (1999) 4919–4924.

DOI: 10.1021/jm990355x

Google Scholar

[50] M. Gümüş, N. Davidson, T. Bauknecht, V. Soldatenkova, K. A. Benhadji, Taxane-based mono- or combination therapy for managing metastatic breast cancer (MBC) in routine practice: a multinational prospective observational study, Curr. Med. Res. Opin., 28(3) (2012).

DOI: 10.1185/03007995.2011.651795

Google Scholar

[51] E. Perez, American Pharmaceutical Partners announces presentation of Abraxane survival data. In: 22nd annual Miami Breast Cancer Conference; Miami, FL, (2005).

Google Scholar

[52] K. S. Lee, Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer, Breast Cancer Res. Treat., (2007).

DOI: 10.1007/s10549-007-9591-y

Google Scholar

[53] K. S. Albain, C. P. Belani, P Bonomi, et al. PIONEER: a phase III randomized trial of paclitaxel poliglumex versus paclitaxel in chemotherapynaive women with advanced-stage non-small-cell lung cancer and performance status of 2. Clin. Lung Cancer, 7 (2006).

DOI: 10.3816/clc.2006.n.027

Google Scholar

[54] W. Liang, M. Lou, W. Si, Nano anticancer micelles of vinca alkaloids entrapped in polyethylene glycolated phospolipids. US Patent 20090053293 A1, 26 February (2009).

Google Scholar

[55] S. E. Zale, G. Troiana, M. M. Ali, J. Hrkach, J. Wright, Therapeutic polymeric nanoparticles comprising vinca alkaloids and methods of making and using them, US Patent 20100104655 A1, 29 April (2010).

Google Scholar

[56] B. Rigas, G. Mackenzie, S. Yu, L. Huang, R. Zhu, T. Nie, Combination treatments and formulations for cancer, WO Patent 2011130486 A2, 20 October (2011).

Google Scholar

[57] L. Einbond, S. Redenti, Growth inhibitoyr effects of nanoparticles containing triterpene glycosides or triterpenes, US Patent 2013/0177657 A1, 11 July (2013).

Google Scholar