Formation of Defects by Stretching Gold Nanosheet - A Simulation Study

Article Preview

Abstract:

Under tensile deformation, gold nanosheets elongate to form defects via a series of small vacancies leading to structural deformations. Behavior of finite gold nanosheets containing 57 and 73 atoms under load are investigated modeled by many-body Gupta potential. Nanosheets with close packed structure (111) plane of a face-centered-cubic structure are stretched along one of the two symmetry directions of the plane. The accessibility of these structures and their stability under load are found to be the key factors governing the morphological evolution of the gold nanosheets. It is found that major deformation is the formation of vacancies which could be called defects in the sheets and is surprisingly different from the ultimate stretching of a nanocylinder which is via neck formation. Thus this study presents completely new theoretical results for gold nanosheets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-154

Citation:

Online since:

September 2013

Export:

Price:

[1] Yongping Zheng, Ning Wei, Zheyong Fan, Lanqing Xu, Zhigao Huang, "Mechanical properties of grafold: a demonstration of strengthened grapheme", Nanotechnology, 22(2011) 479-501.

DOI: 10.1088/0957-4484/22/40/405701

Google Scholar

[2] Ambarish Sanyal, Murali Sastry, "Gold nanosheets via reduction of aqueous chloroaurate ions by anthracene anions bound to a liquid–liquid interface", CHEM. COMMUN.(2003) 1236-1237.

DOI: 10.1039/b302591h

Google Scholar

[3] Murali Sastry, Anita Swami, Saikat Mandal, PR. Selvakannan, "New approaches to the synthesis of anisotropic, core–shell and hollow metal Nanostructures", Journal of Materials Chemistry, 15(2005) 3161–3174.

DOI: 10.1039/b502704g

Google Scholar

[4] L.M. Molina, B. Hammer, "Some recent theoretical advances in the understanding of the catalytic activity of Au", Applied Catalysis, 291(2005) 21-31.

DOI: 10.1016/j.apcata.2005.01.050

Google Scholar

[5] Tetsuro Soejima, Nobuo Kimizuka, "Ultrathin Gold Nanosheets Formed by Photoreduction at the Ionic Liquid/Water Interface",The Chemical Society of Japan, 34(2005) 1234-1235.

DOI: 10.1246/cl.2005.1234

Google Scholar

[6] Shin-ya Onoue, Junhui He,Toyoki Kunitake, "Fabrication of Gold Nanosheet and Nanowire by Oxygen Plasm Induced Fusion of Densely Arrayed Nanoparticles", Chemistry Letters, 35(2006) 214-215.

DOI: 10.1246/cl.2006.214

Google Scholar

[7] Cuncheng Li, Weiping Cai, Bingqiang Cao, Fengqiang Sun, Yue Li, Caixia Kan, Lide Zhang, "Mass Synthesis of Large, Single-Crystal Au Nanosheets Based on a Polyol Process", Adv. Funct. Mater., 16(2006) 83–90.

DOI: 10.1002/adfm.200500209

Google Scholar

[8] Zhijuan Wanga, Junhua Yuan,Min Zhou ,Li Niu, Ari Ivaska, " Synthesis, characterization and mechanism of cetyltrimethylammoniumbromide bilayer-encapsulated gold nanosheets and nanocrystals", Applied Surface Science, 254(2008) 6289–6293.

DOI: 10.1016/j.apsusc.2008.02.080

Google Scholar

[9] TamilSelvi Selvam, Chao-Ming Chiang, Ming Chi, "Organic-phase synthesis of self-assembled gold nanosheets", J Nanopart Res, 13(2011) 3275–3286.

DOI: 10.1007/s11051-011-0242-1

Google Scholar

[10] Shih-Jen Hsu, Ivan J. B. Lin, "Synthesis of Gold Nanosheets through Thermolysis of Mixtures of Long Chain 1-Alkylimidazole and Hydrogen Tetrachloroaurate(III)", Journal of the Chinese Chemical Society, 56(2009) 98-106.

DOI: 10.1002/jccs.200900014

Google Scholar

[11] Shih-Kai Chien , Yue-Tzu Yang, Cha'o-Kuang Chen, "A molecular dynamics study of the mechanical properties of graphene nano ribbon embedded gold composites", Nanoscale, 3(2011) 4307-4313.

DOI: 10.1039/c1nr10664c

Google Scholar

[12] (a) N Krasteva, I Besnard, B Guse, RE Bauer, K Mullen, A Yasuda and T Vossmeyer, "Lithographic patterning of nanoparticle films self-assembled from organic solutions by using a water-soluble mask", Nano Lett., 2(2002) 551-553. (b) E Katz, I Willner, Angew, "Integrated Nanoparticle Biomolecule Hybrid Systems: Synthesis, Properties, and Applications", Chem., Int. Ed., 43(2004) 6042-6108.

DOI: 10.1002/anie.200400651

Google Scholar

[13] MC Daniel, D Astruc, "Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology", Chem. Rev., 104(2004) 293-346.

DOI: 10.1021/cr030698+

Google Scholar

[14] Jianqiang Hu, Zhouping Wang and Jinghong Li, "Gold nanoparticles With Special Shapes: Controlled Synthesis,Surface-enhanced Raman Scattering, and The Application in Biodetection", Sensors, 7(2007) 3299-3311.

DOI: 10.3390/s7123299

Google Scholar

[15] Sadeghian RB, "A Novel Gas Sensor Based on Tunneling-Field-Ionization on Whisker-Covered Gold Nanowires", 8(2008) 161-169.

DOI: 10.1109/jsen.2007.912788

Google Scholar

[16] R. P. Gupta, "Lattice relaxation at a metal surface", Phys. Rev. B 23(1981) 6265-6270.

Google Scholar

[17] F Cleri, V Rosato, "Tight-binding potentials for transition metals and alloys", Phys. Rev. B, 48(1993) 22.

DOI: 10.1103/physrevb.48.22

Google Scholar

[18] Xiao Gu and Xin-Gao Gong, "Structural transitions of non-helical Au nano tubes induced by axial compression", J. Phys. Condens. Matter. 19(2007) 242205.

DOI: 10.1088/0953-8984/19/24/242205

Google Scholar

[19] C. Kittel, Introduction to Solid State Physics, Wiley Eastern Limited Reprint, New York, 1988.

Google Scholar

[20] SM Foiles, "Embedded atoms and related methods for modeling metallic systems", Mater. Res. Soc. Bull. 21(1996) 24.

Google Scholar

[21] IL Garzon, K Michaelian, MR Beltran, A Posada Amarillas, P Ordejon, E Artacho, D Sanchez Portal, JM Soler , "Structure and thermal stability of gold nanoclusters: The Au38 case", Eur. Phys. J. D 9(1999) 211-215.

DOI: 10.1007/s100530050428

Google Scholar

[22] Khaleda Banu, Takayoshi Shimura, "Synthesis of large-scale transparent gold nanosheets sandwiched between stabilizers at a solid–liquid interface", New J. Chem, DOI: 10.1039/C2NJ40478H, (2012).

DOI: 10.1039/c2nj40478h

Google Scholar

[23] L Boldrin, F Scarpa, R Chowdhury, S Adhikari, "Effective mechanical properties of hexagonal boron nitride nanosheets", Nanotechnology, 22(2011) 505702.

DOI: 10.1088/0957-4484/22/50/505702

Google Scholar

[24] Tetsuya Morishita , Michelle JS Spencer, Salvy P Russo, Ian K Snook, Masuhiro Mikami , "Surface reconstruction of ultrathin silicon nanosheets", Chemical Physics Letters, 506(2011) 221–225.

DOI: 10.1016/j.cplett.2011.03.004

Google Scholar

[25] NR Jana, L Gearhart, CJ Murphy, "Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio", Chem. Commun., 7(2001) 617-618.

DOI: 10.1039/b100521i

Google Scholar

[26] KR Brown, DJ Walter, MJ Natan, "Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape", Chem. Mater., 12(2000) 306-313.

DOI: 10.1021/cm980065p

Google Scholar

[27] N Malikova, I Pastoriza Santos, M Schierhorn, NA Kotov, LM Liz Marzan, "Layer by layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions", Langmuir, 18(2002) 3694-3697.

DOI: 10.1021/la025563y

Google Scholar

[28] Nancy Ortiz, Sara E Skrabalak, "Controlling the Growth Kinetics of Nanocrystals via Galvanic Replacement: Synthesis of Au Tetrapods and Star: Shaped Decahedra", Cryst. Growth Des., 11(2011) 3545-3550.

DOI: 10.1021/cg200484m

Google Scholar

[29] F Kim, JH Song, PD Yang, "Photochemical Synthesis of Gold Nanorods", J. Am. Chem. Soc. 124(2002) 14316-14317.

DOI: 10.1021/ja028110o

Google Scholar

[30] CJ Murphy, NR Jana, "Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires", Adv. Mater., 14(2002) 80-82.

DOI: 10.1002/1521-4095(20020104)14:1<80::aid-adma80>3.0.co;2-#

Google Scholar

[31] BD Busbee, SO Obare, CJ Murphy, "An Improved Synthesis of High-Aspect-Ratio Gold Nanorods", Adv. Mater., 15(2003) 414-416.

DOI: 10.1002/adma.200390095

Google Scholar

[32] WO Milligan, RH Morriss, "Morphology of Colloidal Gold-A Comparative Study", J. Am. Chem. Soc., 86(1964) 3461-3467.

DOI: 10.1021/ja01071a012

Google Scholar

[33] AI Kirkland, DA Jefferson, DG Duff, PP Edwards, I Gameson, BFG Johnson, DJ Smith, "Structural Studies of Trigonal Lamellar Particles of Gold and Silver", Proc. R. Soc. London, 440(1993) 589-609.

DOI: 10.1098/rspa.1993.0035

Google Scholar

[34] TK Sau, CJ Murphy, "Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution", J. Am. Chem. Soc. 126(2004) 8648-8649.

DOI: 10.1021/ja047846d

Google Scholar

[35] Y Zhou, CY Wang, YR Zhu, ZY Chen, "A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature", Chem. Mater., 11(1999) 2310-2312.

DOI: 10.1021/cm990315h

Google Scholar

[36] N Malikova, I Pastoriza Santos, M Schierhorn, NA Kotov, LM Liz Marzán, "Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles:  Control of Interparticle Interactions", Langmuir, 18(2002) 3694-3697.

DOI: 10.1021/la025563y

Google Scholar

[37] M Tsuji, M Hashimoto, Y Nishizawa, T Tsuji, "Preparation of gold Nanoplates by a Microwave Polyol method", Chem. Lett., 32(2003) 1114-1115.

DOI: 10.1246/cl.2003.1114

Google Scholar

[38] TA Kelf, Y Tanaka, O Matsuda, E M Larsson, D S Sutherland, OB Wright, "Ultra fast Vibrations of Gold Nano rings", Nano Lett., B, 11(2011) 3893-3898.

DOI: 10.1021/nl202045z

Google Scholar

[39] GS Metraux, YC Cao, RC Jin, CA Mirkin, "Triangular Nanoframes Made of Gold and Silver", Nano Lett., 3(2003) 519-522.

DOI: 10.1021/nl034097+

Google Scholar

[40] LP Jiang, S Xu, JM Zhu, JR Zhang, JJ Zhu, HY Chen, "Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings", Inorg. Chem., 43(2004) 5877-5883.

DOI: 10.1021/ic049529d

Google Scholar

[41] SS Shankar, A Rai, B Ankamwar, A Singh, A Ahmad, M Sastry, "Biological synthesis of triangular gold nanoprisms", Nat. Mater., 3(2004) 482-488.

DOI: 10.1038/nmat1152

Google Scholar

[42] F Kim, S Connor, H Song, T Kuykendall, PD Yang, "Platonic Gold Nanocrystals", Angew. Chem. Int. Ed., 43(2004) 3673-3677.

DOI: 10.1002/anie.200454216

Google Scholar

[43] YG Sun, YN Xia, "Shape-Controlled Synthesis of Gold and Silver Nanoparticles", Science, 298(2002) 2176-2179.

DOI: 10.1126/science.1077229

Google Scholar

[44] YG Sun, YN Xia, "Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium", J. Am. Chem. Soc., 126(2004) 3892-3901.

DOI: 10.1021/ja039734c

Google Scholar

[45] Hsiangkuo Yuan, Christopher G Khoury, Hanjun Hwang, Christy M Wilson, Gerald A Grant, Tuan WoDinh, "Gold Nanostars: Surfactant-free synthesis, 3D modeling and two-photon photoluminence imaging", Nano Technology, 23(2012) 075102.

DOI: 10.1088/0957-4484/23/7/075102

Google Scholar

[46] SF Pang, T Kondo, T Kawai, "Formation of dendrimer-like gold nanoparticle assemblies", Chem. Mater. 17(2005) 3636-3641.

DOI: 10.1021/cm050387a

Google Scholar