Effect of Chain Morphology and Carbon-Nanotube Additives on the Glass Transition Temperature of Polyethylene

Article Preview

Abstract:

Glass transition temperature Tg is the most important parameter affecting the mechanical properties of amorphous and semi-crystalline polymers. However, the atomistic origin of glass transition is not yet well understood. Using Polyethylene (PE) as an example, this paper investigates the glass transition temperature Tg of PE with the aid of molecular dynamics (MD) simulation. The effects of PE chain branches, crystallinity and carbon-nanotube (CNT) additives on the glass transition temperature are analyzed. The MD simulations render a good agreement with the relevant experimental data of semi-crystalline PE and show the significant effects of crystallinity and addition of CNTs on Tg.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-23

Citation:

Online since:

July 2013

Export:

Price:

[1] A.J. Peacock, Handbook of Polyethylene Structures - properties and applications, Marcel Dekker, New York, 2002.

Google Scholar

[2] J. Liu, Q. Yang, Molecular dynamics simulation for mechanical properties of CNT/ Polyethylene composites, Journal of Physics: Conference Series, 188 (1) (2009) 012052.

DOI: 10.1088/1742-6596/188/1/012052

Google Scholar

[3] K. Mylvaganam, L.C. Zhang, Simulation of chemically bonded nanotube-polyethylene composites subjected to mechanical loading, In 5th Australasian Congress on Applied Mechanics (ACAM 2007) , Engineers Australia Brisbane, Australia, 2007.

Google Scholar

[4] M. Griebel, J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites, Computer Methods in Applied Mechanics and Engineering, 193 (17-20) (2004) 1773-1788.

DOI: 10.1016/j.cma.2003.12.025

Google Scholar

[5] G.M. Odegard, S.J.V. Frankland, T.S. Gates, The effect of chemical functionalization on mechanical properties of nanotube/polymer composites, in Structural Dynamics, and Materials Conference, Norfolk, VA, 2003.

DOI: 10.2514/6.2003-1701

Google Scholar

[6] S.J.V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, T. S. Gates, The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation, Composites Science and Technology, 63 (11) (2003) 1655-1661.

DOI: 10.1016/s0266-3538(03)00059-9

Google Scholar

[7] M. Rahmat, P. Hubert, Molecular Dynamics Simulation of Single-Walled Carbon Nanotube – PMMA Interaction, Journal of Nano Research ,18-19 (2012) 117-128.

DOI: 10.4028/www.scientific.net/jnanor.18-19.117

Google Scholar

[8] H. B. Richard, Relaxation processes in crystalline polymers: experimental behaviour- a review, Polymer, 26 (3) (1985) 323-347.

DOI: 10.1016/0032-3861(85)90192-2

Google Scholar

[9] M.S. Graff, R.H. Boyd, A dielectric study of molecular relaxation in linear polyethylene, Polymer, 35 (9) (1994) 1797-1801.

DOI: 10.1016/0032-3861(94)90967-9

Google Scholar

[10] F.C. Stehling, L. Mandelkern, The Glass Temperature of Linear Polyethylene, Macromolecules 3 (2) (1970) 242-252.

DOI: 10.1021/ma60014a023

Google Scholar

[11] A.E. Woodward, J. A. Sauer, C. W. Deeley, D. E. Kline, The dynamic mechanical behavior of some nylons, Journal of Colloid Science, 12 (4) (1957) 363-377.

DOI: 10.1016/0095-8522(57)90036-3

Google Scholar

[12] J. Han, R.H. Gee, R.H. Boyd, Glass Transition Temperatures of Polymers from Molecular Dynamics Simulations, Macromolecules, 27 (26) (1994) 7781-7784.

DOI: 10.1021/ma00104a036

Google Scholar

[13] A. Koyama, T. Yamamoto, K. Fukao,Y. Miyamoto, Molecular dynamics studies on local ordering in amorphous polyethylene, The Journal of Chemical Physics, 115 (1) (2001) 560-566.

DOI: 10.1063/1.1378068

Google Scholar

[14] C. Wei, D. Srivastava, K. Cho, Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites, Nano Letters, 2 (6) (2002) 647-650.

DOI: 10.1021/nl025554+

Google Scholar

[15] R. Wu, X. Zhang, Q. Ji, B. Kong, X. Yang, Conformational Transition Behavior of Amorphous Polyethylene across the Glass Transition Temperature, The Journal of Physical Chemistry B, 113 (27) (2009) 9077-9083.

DOI: 10.1021/jp8110919

Google Scholar

[16] Accelrys Inc., San Diego, CA.

Google Scholar

[17] D. N. Theodorou, U.W. Suter, Detailed molecular structure of a vinyl polymer glass, Macromolecules, 18 (7) (1985) 1467-1478.

DOI: 10.1021/ma00149a018

Google Scholar

[18] H. Meirovitch, Computer simulation of self-avoiding walks: Testing the scanning method. The Journal of Chemical Physics, 79 (1) (1983) 502-508.

DOI: 10.1063/1.445549

Google Scholar

[19] H. Sun, COMPASS:An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, The Journal of Physical Chemistry B, 102 (38) (1998) 7338-7364.

DOI: 10.1021/jp980939v

Google Scholar

[20] Y.D. Kuang, X.Q. He, Young's moduli of functionalized single-wall carbon nanotubes under tensile loading, Composites Science and Technology, 69 (2) (2009) 169-175.

DOI: 10.1016/j.compscitech.2008.09.044

Google Scholar

[21] Q.Wang, W. H. Duan, N. L. Richards, L. M. Liew, Modeling of fracture of carbon nanotubes with vacancy defect, Physical Review B, 75 (20) (2007) 201405.

DOI: 10.1103/physrevb.75.239901

Google Scholar

[22] M. Grujicic, Y.P. Sun, K.L. Koudela, The effect of covalent functionalization of carbon nanotube reinforcements on the atomic-level mechanical properties of poly-vinyl-ester-epoxy, Applied Surface Science, 253 (6) (2007) 3009-3021.

DOI: 10.1016/j.apsusc.2006.06.050

Google Scholar

[23] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Di Nola, J.R. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, 81 (8) (1984) 3684-3690.

DOI: 10.1063/1.448118

Google Scholar

[24] D. Brown, J.H.R. Clarke, M. Okuda, T. Yamazaki, The preparation of polymer melt samples for computer simulation studies, The Journal of Chemical Physics, 100 (8) (1994) 6011-6018.

DOI: 10.1063/1.467111

Google Scholar