Study and Analysis of Mechanical Behavior between Rigid and Dynamic Fixation Systems Analyzed by the Finite Element Method

Article Preview

Abstract:

Orthopedic fixation devices are widely used in treatment of spinal diseases. It is expected that application of dynamic stabilization confers valuable movement possibility besides its main role of load bearing. Comparative investigation between pedicle screw model rigid fixation and (B Dyne, Elaspine, Bioflex, Coflexe rivet) models dynamic fixation systems may elucidate the efficacy of each design. The goal of the present study is to evaluate the efficacy of five fixation systems mounted on L4-L5 motion segment. In this numerical study, a 3D precious model of L4, L5 and their intervertebral disc has been employed based on CT images. five fixation devices have been also implanted internally to the motion segment. Finite element method was used to evaluate stress distribution in the disc and determine the overall displacement of the segment as a measure of movement possibility. The results show that The Coflex rivet implantation can provide stability in all motions and reduce disc annulus stress at the surgical segment (L4-L5), on the other hand, Maximum stress in the disc has been observed in dynamic systems but within the safe range. The greater movement of the motion segment has been also appeared in dynamic fixations. Existence of the fixation systems reduced the stress on the intervertebral disc which might be exerted in intact cases. Use of the fixation devices can considerably reduce the load on the discs and prepare conditions for healing of the injured ones. Furthermore, dynamic modes of fixation confer possibility of movement to the motion segments in order to facilitate the spinal activities.

You might also be interested in these eBooks

Info:

Pages:

12-31

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] Arbit E, Pannullo S, Lumbar stenosis: a clinical review, Clin Orthop. 384 (2001) 137–143.

DOI: 10.1097/00003086-200103000-00016

Google Scholar

[2] Kuslich SD, Danielson G, Dowdle JD, Sherman J, Fredrickson B, Yuan H, Griffith SL, Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage, Spine. 25(20) (2000) 2656–2662.

DOI: 10.1097/00007632-200010150-00018

Google Scholar

[3] Lai PL, Chen LH, Niu CC, Fu TS, Chen WJ. Relation between laminectomy and development of adjacent segment instability after lumbar fusion with pedicle fixation, Spine. 29(22) (2004) 2527–2532.

DOI: 10.1097/01.brs.0000144408.02918.20

Google Scholar

[4] Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, Implicito DA, Martin MJ, Johnson DR, II, Skidmore GA, Vessa PP, Dwyer JW, Puccio S, Cauthen JC, Ozuna RM, A prospective randomized multi-center study for the treatment of lumbar spinal stenosis with the X STOP interspinous implant: 1-year results, Eur Spine J. 13(1) (2004).

DOI: 10.1007/s00586-003-0581-4

Google Scholar

[5] Walker BF. The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J Spinal Disord. 13(3) (2000) 205–17.

Google Scholar

[6] Mazloum A, Nozad H, Kumashiro M. Occupational low back pain among workers in some small-sized factories in Ardabil, Iran. Ind Health. 2006; 44(1): 135–9.

DOI: 10.2486/indhealth.44.135

Google Scholar

[7] Marras WS, Lavender SA, Leurgans SE, Fathallah FA, Ferguson SA, Allread WG, et al. Biomechanical risk factors for occupationally related low back disorders. Ergonomics. 1995; 38(2): 377–410.

DOI: 10.1080/00140139508925111

Google Scholar

[8] Jeong GK, Bendo JA. Spinal disorders in the elderly. Clin Orthop Relat Res. 2004; (425): 110–25.

Google Scholar

[9] Marras WS. Occupational low back disorder causation and con¬trol. Ergonomics. 2000; 43(7): 880–902.

DOI: 10.1080/001401300409080

Google Scholar

[10] Hides JA, Stokes MJ, Saide M, Jull GA, Cooper DH. Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine (Phila Pa 1976). 1994; 19(2): 165–72.

DOI: 10.1097/00007632-199401001-00009

Google Scholar

[11] Sullivan MJL, Stanish W, Waite H, Sullivan M, Tripp DA. Catastro¬phizing, pain, and disability in patients with soft-tissue injuries. Pain. 1998; 77(3): 253–60.

DOI: 10.1016/s0304-3959(98)00097-9

Google Scholar

[12] Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, et al. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998; 128(10): 793–800.

DOI: 10.7326/0003-4819-128-10-199805150-00001

Google Scholar

[13] Turner JA, Loeser JD, Bell KG. Spinal cord stimulation for chronic low back pain: a systematic literature synthesis. Neurosurgery. 1995; 37(6): 1088–95.

DOI: 10.1097/00006123-199512000-00008

Google Scholar

[14] Putzier M, Schneider SV, Funk J, Perka C. [Application of a dy¬namic pedicle screw system (DYNESYS) for lumbar segmental de¬generations - comparison of clinical and radiological results for different indications]. Z Orthop Ihre Grenzgeb. 2004; 142(2): 166–73.

DOI: 10.1055/s-2004-818781

Google Scholar

[15] Harrington PR, Dickson JH. Spinal Instrumentation in the Treat¬ment of Severe Progressive Spondylolisthesis. Clin Orthop Relat Res. 1976; (117): 157–63.

Google Scholar

[16] Magerl FP. Stabilization of the Lower Thoracic and Lumbar Spine with External Skeletal Fixation. Clin Orthop Relat Res. 1984; (189): 125–41.

DOI: 10.1097/00003086-198410000-00014

Google Scholar

[17] Dick W, Kluger P, Magerl F, Woersdorfer O, Zach G. A new device for internal fixation of thoracolumbar and lumbar spine frac¬tures: the fixateur interne,. Paraplegia. 1985; 23(4): 225–32.

DOI: 10.1038/sc.1985.38

Google Scholar

[18] Roy-Camille R, Saillant G, Berteaux D, Marie-Anne S, Mamoudy P. [Vertebral osteosynthesis using metal plates. Its different uses (author's transl)]. Chirurgie. 1979; 105(7): 597–603.

Google Scholar

[19] Steffee AD, Biscup RS, Sitkowskj DJ. Segmental Spine Plates with Pedicle Screw Fixation A New Internal Fixation Device for Disor¬ders of the Lumbar and Thoracolumbar Spine. Clin Orthop Relat Res. 1986; (203): 45–53.

DOI: 10.1097/00003086-198602000-00006

Google Scholar

[20] Turner JA, Ersek M, Herron L, Haselkorn J, Kent D, Ciol MA, et al. Patient outcomes after lumbar spinal fusions. JAMA. 1992; 268(7): 907–11.

DOI: 10.1001/jama.1992.03490070089049

Google Scholar

[21] Buttermann GR, Garvey TA, Hunt AF, Transfeldt EE, Bradford DS, Boachie-Adjei O, et al. Lumbar fusion results related to diagnosis. Spine (Phila Pa 1976). 1998; 23(1): 116–27.

DOI: 10.1097/00007632-199801010-00024

Google Scholar

[22] Thomsen K, Christensen FB, Eiskjaer SP, Hansen ES, Fruensgaard S, Bunger CE. 1997 Volvo Award winner in clinical studies. The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. Spine (Phila Pa 1976). 1997; 22(24): 2813–22.

DOI: 10.1097/00007632-199712150-00004

Google Scholar

[23] Aota Y, Kumano K, Hirabayashi S. Postfusion instability at the adja¬cent segments after rigid pedicle screw fixation for degenerative lumbar spinal disorders. J Spinal Disord Tech. 1995; 8(6): 464–73.

DOI: 10.1097/00002517-199512000-00008

Google Scholar

[24] Rahm MD, Hall BB. Adjacent-Segment Degeneration After Lumbar Fusion with Instrumentation. J Spinal Disord. 1996; 9(5): 392–400.

DOI: 10.1097/00002517-199610000-00005

Google Scholar

[25] Schlegel JD, Smith JA, Schleusener RL. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine (Phila Pa 1976). 1996; 21(8): 970–81.

DOI: 10.1097/00007632-199604150-00013

Google Scholar

[26] Schulitz KP, Wiesner L, Wittenberg RH, Hille E. [The mobile seg¬ment above fusion]. Z Orthop Ihre Grenzgeb. 1996; 134(2): 171–6.

DOI: 10.1055/s-2008-1039791

Google Scholar

[27] Lehmann TR, Spratt KF, Tozzi JE, Weinstein JN, Reinarz SJ, el-Khoury GY, et al. Long-term follow-up of lower lumbar fusion patients. Spine (Phila Pa 1976). 1987; 12(2): 97–104.

DOI: 10.1097/00007632-198703000-00004

Google Scholar

[28] Whitecloud T, Davis JM, Olive PM. Operative Treatment of the Degenerated Segment Adjacent to a Lumbar Fusion. Spine. 1994; 19(5): 531–6.

DOI: 10.1097/00007632-199403000-00007

Google Scholar

[29] Bastian L, Lange U, Knop C, Tusch G, Blauth M. Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixa¬tion: a biomechanical study. Europ Spine J. 2001; 10(4): 295–300.

DOI: 10.1007/s005860100278

Google Scholar

[30] Schwarzenbach O, Berlemann U, Stoll TM, Dubois G. Posterior dynamic stabilization systems: DYNESYS. Orthop Clin North Am. 2005; 36(3): 363–72.

DOI: 10.1016/j.ocl.2005.03.001

Google Scholar

[31] Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutraliza¬tion system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J. 2002; 11 Suppl 2: S170–8.

DOI: 10.1007/s00586-002-0438-2

Google Scholar

[32] Shin DS, Lee K, Kim D. Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. Com-Aid Desig. 2007; 39(7): 559–67.

DOI: 10.1016/j.cad.2007.03.005

Google Scholar

[33] Cunningham BW, Dawson JM, Hu N, Kim SW, McAfee PC, Griffith SL. Preclinical evaluation of the Dynesys posterior spi¬nal stabilization system: a nonhuman primate model. Spine J. 2010; 10(9): 775–83.

DOI: 10.1016/j.spinee.2010.04.005

Google Scholar

[34] Zhang QH, Zhou YL, Petit D, Teo EC. Evaluation of load transfer characteristics of a dynamic stabilization device on disc loading under compression. Med Eng Phys. 2009; 31(5): 533–8.

DOI: 10.1016/j.medengphy.2008.09.011

Google Scholar

[35] Schmoelz W, Huber JF, Nydegger T, Dipl I, Claes L, Wilke HJ. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech. 2003; 16(4): 418–23.

DOI: 10.1097/00007632-200300001-00015

Google Scholar

[36] Dubois G, De Germay B, Schaerer NS. Dynamic neutralization. In: Szpalski M, Gunzburg R, Pope MH; editors. A new concept for restablization of the spine. Philadelphia: Lippincott Williams & Wilkins; (1999).

Google Scholar

[37] Cakir B, Ulmar B, Koepp H. [Posterior dynamic stabilization as an alternative for dorso-ventral fusion in spinal stenosis with degen¬erative instability]. Z Orthop Ihre Grenzgeb. 2002; 141(4): 418–24.

DOI: 10.1055/s-2003-41568

Google Scholar

[38] Kim SM, Yang I, Lee SY, Cho SY. Dynamic simulation of universal spacer in Dynesys dynamic stabilization system for human ver¬tebra. Trans Nonfer Metal Soci China. 2009; 19: s238–42.

DOI: 10.1016/s1003-6326(10)60277-4

Google Scholar

[39] Natarajan RN and Andersson GBJ. Modeling the annular incision in a herniated lumbar intervertebral disc to study its effect on disc stability. Comput Struct 1997; 64: 1291-7.

DOI: 10.1016/s0045-7949(97)00023-0

Google Scholar

[40] Pitzen T, Geisler FH, Matthis D, Storz HM, Pedersen K and Steudel WI. The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment. Eur Spine J 2001; 10: 23-9.

DOI: 10.1007/s005860000223

Google Scholar

[41] Polikeit, A: Finite element analysis of the lumbar spine: Clinical application. Inaugural dissertation, University of Bern, (2002).

Google Scholar

[42] Denozi´ere G. Numerical modeling of a ligamentous lumber motion segment, M.S. thesis, Department of Mechanical Engineering, Georgia Institute of Technology, Georgia, USA, (2004).

Google Scholar

[43] Baroud, G., Nemes, J., Heini, P., and Steffen, T.: Load shift of the intervertebral disc after a vertebroplasty: a finite element study. Eur Spine J 2003; 12: 421-6.

DOI: 10.1007/s00586-002-0512-9

Google Scholar

[44] Gwanseob Shin: Viscoelastic responses of the lumbar spine during prolonged stooping. Ph.D. dissertation, NCSU, USA, (2005).

Google Scholar

[45] Sairyo K, Goel VK, Masuda A, Vishnubhotla S, Faizan A, Biyani A, Ebraheim N, Yonekura D, Murakami RI and Terai T. Three-dimensional finite element analysis of the pediatric lumbar spine. Eur Spine J 2006; 15: 923-9.

DOI: 10.1007/s00586-005-1026-z

Google Scholar

[46] Rohlmann A, Burra NK, Zander T, Bergmann G. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine. Eur Spine J 2007; 16: 1223-31.

DOI: 10.1007/s00586-006-0292-8

Google Scholar

[47] Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3–L4 motion segment subjected to axial compressive loads. Spine 1995; 20: 689–98.

DOI: 10.1097/00007632-199503150-00010

Google Scholar

[48] Smit T, Odgaard A, Schneider E. Structure and function of vertebral trabecular bone. Spine 1997; 22: 2823-33.

DOI: 10.1097/00007632-199712150-00005

Google Scholar

[49] Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine 1995; 20: 887-900.

DOI: 10.1097/00007632-199504150-00003

Google Scholar

[50] Lee KK, Teo EC. Effects of laminectomy and facetectomy on the stability of the lumbar motion segment. Med Eng Phys 2004; 26: 183-92.

DOI: 10.1016/j.medengphy.2003.11.006

Google Scholar

[51] Rohlmann A, Zander T, Schmidt H, Wilke HJ, Bergmann G. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech 2006; 39: 2484-90.

DOI: 10.1016/j.jbiomech.2005.07.026

Google Scholar

[52] Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 1986; 11: 914–27.

DOI: 10.1097/00007632-198611000-00012

Google Scholar

[53] White 3rd AA, Panjabi MM. Clinical biomechanics of the spine. 2nd ed. Philadelphia/Toronto: J.B. Lippincott Company; (1990).

Google Scholar

[54] Lee KK, Teo EC, Fuss FK, VanneuvilleV, Qiu TX, NgHW, et al. Finiteelement analysis for lumbar interbody fusion under axial loading. IEEE Trans Biomed Eng 2004; 51: 393–400.

DOI: 10.1109/tbme.2003.820994

Google Scholar

[55] Polikeit A, Ferguson SJ, Nolte LP, Orr TE. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 2003; 12: 413–20.

DOI: 10.1007/s00586-002-0505-8

Google Scholar

[56] Chen CS, Cheng CK, Liu CL, Lo WH. Stress analysis of the disc adjacent fusion in lumbar spine. Med Eng Phys 2001; 23: 483–91.

Google Scholar

[57] Chen SH, Zhong ZC, Chen CS, Chen WJ, Hung C. 2009. Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys. 31(2): 244–253.

DOI: 10.1016/j.medengphy.2008.07.007

Google Scholar

[58] Zhong ZC, Chen SH, Hung CH. 2009. Load- and displacementcontrolled finite element analyses on fusion and non-fusion spinal implants. Proc Inst Mech Eng H. 223(2): 143–157.

DOI: 10.1243/09544119jeim476

Google Scholar

[59] Eberlein R, Holzapfel GA, Schulze-Bauer CAJ. 2001. An anisotropic constitutive model for annulus tissue, and enhanced finite element analysis of intact lumbar disc bodies. Comput Methods Biomech Biomed Engin. 4(3): 209–230.

DOI: 10.1080/10255840108908005

Google Scholar

[60] Vena P, Franzoso G, Gastaldi D, Contro R, Dallolio V. 2005. A finite element model of the L4–L5 spinal motion segment: biomechanical compatibility of an interspinous device. Comput Methods Biomech Biomed Engin. 8(1): 7–16.

DOI: 10.1080/10255840500062914

Google Scholar

[61] Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke HJ. 2006. Application of a new calibration method for a 3D finite element model of a human lumbar annulus fibrosus. Clin Biomech. 21(4): 337–344.

DOI: 10.1016/j.clinbiomech.2005.12.001

Google Scholar