Mechanoluminescence of Coloured Alkali Halide Crystals

Article Preview

Abstract:

The present paper reports both the experimental and mathematical aspects of elastico-mechanoluminescence (EML), plastico-mechanoluminescence (PML) and fracto-mechanoluminescence (FML) of coloured alkali halide crystals in detail, and thereby provides a deep understanding of the related phenomena. The additively coloured alkali halide crystals do not show ML during their elastic and plastic deformation. The ML emission during the elastic deformation takes place due to the mechanical interaction between bending dislocation segments and F-centres, and the ML emission during plastic deformation takes place due to the mechanical interaction between the moving dislocations and F-centres. The ML emission during fracture is also caused by the mechanical interaction between the moving dislocations and F-centres; however, in certain hard crystals like LiF, NaCl, NaF, etc., fracto ML also occurs due to the gas discharge caused by the creation of oppositely charged walls of cracks. The EML, PML, and solid state FML spectra of coloured alkali halide crystals are similar to their thermoluminescence spectra and afterglow spectra. However, the fracto ML spectra of certain hard crystals like LiF, NaCl, NaF, etc., also contain gas discharge spectra. The solid state ML spectra of coloured alkali halide crystals can be assigned to deformation-induced excitation of halide ions inV2-centres or in other hole-centres. Whereas, the intensity of EML and FML increases linearly with the applied pressure and the impact velocity, the intensity of PML increases quardratically with the applied pressure and the impact velocity because of the plastic flow of the crystals. Both Im and IT increase with the density of F-centres in the crystals and strain rate of the crystals; however, they are optimum for a particular temperature of the crystals. The ML of diminished intensity also appears during the release of applied pressure. Expressions are derived for the elastico ML, plastico ML and fracto ML of coloured alkali halide crystals, in which a good agreement is found between the experimental and theoretical results. Many parameters of crystals such as band gap between the dislocation band and interacting F-centre energy level, radius of interaction between dislocations and F-centres, pinning time of dislocations, work hardening exponent, velocity of cracks, rise time of applied pressure, lifetime of electrons in the dislocation band, lifetime of electrons in shallow traps, diffusion time of holes, critical velocity of impact, etc., can be determined from the ML measurements. The ML of coloured alkali halide crystals has potential for self-indicating method of monitoring the microscopic and macroscopic processes; mechanoluminescence dosimetry; understanding dislocation bands in crystals; interaction between the dislocations and F-centres; dynamics of dislocations; deformation bleaching of coloration, etc. The ML of coloured alkali halide crystals has also the potential for photography, ML memory, and it gives information about slip planes, compression of crystals, fragmentation of crystals, etc.Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-176

Citation:

Online since:

January 2015

Export:

Price:

* - Corresponding Author

[1] B.P. Chandra, Mechanoluminescence, in Luminescence of Solids, D. R. Vij (Ed. ), (Plenum Press, New York, 1998), pp.361-389.

Google Scholar

[2] B.P. Chandra, Mechanoluminescent Smart Materials and Their Applications, in: Stashans A, Gonzalez S, Pinto HP (Eds. ), Electronic and Catalytic Properties of Advanced Materials, Transworld Research Network, Trivandrum, Kerala, India, 2011, p.1.

Google Scholar

[3] F. Bacon, The Advancement of Learning. (1605): Book IV, Chap. 3.

Google Scholar

[4] R. Boyle, Experiments and considerations touching colours (London), 1664; 413- 423.

Google Scholar

[5] R. Waller, Essayes of natural experiments made in the Academie del Cimento, (1684) written in 1667: 160 pp. London.

Google Scholar

[6] T. Wedgwood, Experiments and observations on the production of light from different bodies by heat and by attrition, Phil. Trans. 82 (1792) 270-282.

Google Scholar

[7] B. T. Brady, G. A. Rowell, Laboratory investigation of the electrodynamics of rock fracture, Nature 321 (1986) 488-492.

DOI: 10.1038/321488a0

Google Scholar

[8] F. Freund, Charge generation and propagation in igneous rocks, J. Geodyn. 33 (2002) 543-570.

Google Scholar

[9] F. Freund, Rocks that crackle and sparkle and glow: Strange pre-earthquake phenomena, Journal of Scientific Exploration, 17(2003) 37–71.

Google Scholar

[10] A. Takeuchi, B.W.S. Lau, F. T. Freund, Current and surface potential induced by stress-activated positive holes in igneous rocks, Phys. Chem. Earth 31(2006) 240-247.

DOI: 10.1016/j.pce.2006.02.022

Google Scholar

[11] H. Longchambon, Research experiments on the phenomenons of triboluminescence and of crystalloluminescence, Bull Soc Fr Miner Crystallog 48 (1925) 130-214.

Google Scholar

[12] E.N. Harvey, A history of luminescence from the earliest times until 1900, (Philadelphia) (1957).

Google Scholar

[13] V.G. Wolff, G. Gross, I.N. Stranski, Neuere untersuchungen uber die triboluminezenz, Z. Electrochemie 56 (1952) 420-428.

Google Scholar

[14] G. Gross, I. N. Stranski, G. Wolff, Neuere Untersuchungen über die Tribolumineszenz. II, Z. Electrochemie 59 (1955) 346-350.

Google Scholar

[15] A.J. Walton, Triboluminescence, Adv. Phys. 26 (1977) 887–948.

Google Scholar

[16] B.P. Chandra, Mechanoluminescence of nanoparticles. The Open Nanoscience Journal 5 (Suppl 1-M4) (2011) 45-58.

Google Scholar

[17] H. K. Meyer, D. Obrikat, D.P.M. Rossberg, Progress in triboluminescence of alkali halides and doped zinc sulphides (I), Kristall Und Technik 5 (1970) 5-49.

DOI: 10.1515/9783112653487-002

Google Scholar

[18] K. Meyer, D. Orbikat, M. Rossberg, Progress in triboluminescence of alkali halides and doped zinc sulphides (II), Kristall U. Tech. 5 (1970) 181-205.

DOI: 10.1002/crat.19700050202

Google Scholar

[19] M. I. Molotskii, Generation of holes during the plastic deformation and fracture of crystals. Sov. Sci. Rev. B Chem. 13(1989)1-85.

Google Scholar

[20] B.P. Chandra, Mechanoluminescence and its applications, International Journal of Luminescence and its Applications, 2 (2012) (Special issue – III) 44-72.

Google Scholar

[21] C.N. Xu, T. Watanabe, M. Akiyama, X.G. Zheng, Artificial skin to sense mechanical stress by visible light emission, Appl. Phys. Lett., 74 (1999) 1236-1238.

DOI: 10.1063/1.123510

Google Scholar

[22] C. N. Xu, C. Li, Y. Imai, H. Yamada, Y. Adachi, K. Nishikubo, Development of elastico-luminescent nanoparticles and their applications, Adv. in Sci. and Tech. 45 (2006) 939-944.

Google Scholar

[23] C. Li, Y. Adachi, Y. Imai, K. Nishikubo, C. N. Xu, Processing and properties of SrAl2O4: Eu nanoparticles prepared via polymer- coated precursor, J. Electrochem. Soc. 154 (2007) J362-J364.

Google Scholar

[24] D.R. Reddy, B.K. Reddy, Laser-like mechanoluminescence in ZnMnTe-diluted magnetic semiconductor, Appl. Phys. Lett. 81 (2002) 460-462.

DOI: 10.1063/1.1494116

Google Scholar

[25] B.P. Chandra, V.K. Chandra, P. Jha, Luminescence of II-VI Semiconductor Nanoparticles, Solid State Phenomena, 222 (2015) 1-65.

DOI: 10.4028/www.scientific.net/ssp.222.1

Google Scholar

[26] M. Akiyama, C.N. Xu, H. Matsui, K. Nonaka, T. Watanabe, Recovery phenomenon of mechanoluminescence from CaAl2SiO7: Ce by irradiation with ultraviolet light, Appl. Phys. Lett. 75 (1999) 2548-2550.

DOI: 10.1063/1.125073

Google Scholar

[27] M. Akiyama, C.N. Xu, Y. Liu, K. Nonaka, T. Watanabe, Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity, J. Lumin. 97(2002) 13–18.

DOI: 10.1016/s0022-2313(01)00419-7

Google Scholar

[28] C.N. Xu, T. Watanabe, M. Akiyama, X.G. Zheng, Direct view of stress distribution in solid by mechanoluminescence, Appl. Phys. Lett. 74 (1999) 2414-2416.

DOI: 10.1063/1.123865

Google Scholar

[29] C. N. Xu, H. Yamada, X. Wang, X. G. Zheng, Strong elasticoluminescence from monoclinic-structure SrAl2O4, Appl. Phys. Lett. 84 (2004) 3040-3042.

DOI: 10.1063/1.1705716

Google Scholar

[30] I. Sakaihara, K. Tanaka, T. Wakasugi, R. Ota, K. Fujita, K. Hirao, T. Ishihara, Triboluminescence of (Sr, Ba)Al2O4 polycrystals doped with Eu3+ and Eu2+, Jpn. J. Appl. Phys. 41 (2002) 1419–1423.

DOI: 10.1143/jjap.41.1419

Google Scholar

[31] Y.H. Lin, Z. Dang, Y. Deng, C.W. Nan, Studies on mechanoluminescence from SrAl2O4: Eu, Dy phosphor, Materials Chemistry and Physics 80 (2003) 20–22.

DOI: 10.1016/s0254-0584(02)00478-9

Google Scholar

[32] Y. Jia, M. Yei, W. Jia, Stress-induced mechanoluminescence in SrAl2O4: Eu2+, Dy3, Optical Materials 28 (2006) 974–979.

DOI: 10.1016/j.optmat.2005.05.014

Google Scholar

[33] K.S. Sohn, S.Y. Seo, Y.N. Kwon, H.D. Park, Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4: (Eu, Dy, Nd), J. Am. Ceram. Soc. 85 (3) (2002) 712–714.

DOI: 10.1111/j.1151-2916.2002.tb00158.x

Google Scholar

[34] P. Jha, B.P. Chandra, Impulsive excitation of mechanoluminescence in SrAl2O4: Eu, Dy phosphors prepared by solid state reaction technique in reduction atmosphere, J. Lumin. 143 (2013) 280-287.

DOI: 10.1016/j.jlumin.2013.05.011

Google Scholar

[35] B.P. Chandra, C.N. Xu, H. Yamada, X.G. Zheng, Luminescence induced by elastic deformation of ZnS: Mn nanoparticles, J. Lumin. 130 (2010) 442-450.

DOI: 10.1016/j.jlumin.2009.10.010

Google Scholar

[36] C.N. Xu, Encyclopedia of Smart Materials, Vol. 1, edited by Schwarz M., John Willey & Sons, Inc., 2002, pp.190-201.

Google Scholar

[37] C. Li, C.N. Xu, L. Zhang, H. Yamada, Y. Imai, W.E. Wang, Dynamic visualization of stress distribution by mechanoluminescence image, Key. Engg. Materials 388 (2009) 265-268.

DOI: 10.4028/www.scientific.net/kem.388.265

Google Scholar

[38] J.S. Kim, Y.N. Kwon, N. Shin, K.S. Sohn, Mechanoluminescent SrAl2O4 : Eu, Dy phosphor for use in visualization of quasidynamic crack propagation, Appl. Phys. Lett. 90 (2007) 241916 -1-3.

DOI: 10.1063/1.2748100

Google Scholar

[39] J.S. Kim, Y.N. Kwon, N. Shin, K. S. Sohn, Visualization of fractures in alumina ceramics by mechanoluminescence, Acta Materialia 53 (2005) 4337–4343.

DOI: 10.1016/j.actamat.2005.05.032

Google Scholar

[40] V.K. Chandra, B.P. Chandra, P. Jha, Strong luminescence induced by elastic deformation of piezoelectric crystals, Appl. Phys. Lett. 102 (2013) 241105-1-241105-5.

DOI: 10.1063/1.4811160

Google Scholar

[41] V.K. Chandra, B.P. Chandra, P. Jha, Self-recovery of mechanoluminescence in ZnS: Cu and ZnS: Mn phosphors by trapping of drifting charge carriers, Appl. Phys. Lett. 103 (2013) 161113-1-161113-5.

DOI: 10.1063/1.4825360

Google Scholar

[42] B.P. Chandra, V.K. Chandra, P. Jha, Microscopic theory of elastico-mechanoluminescent smart materials, Appl. Phys. Lett. 104 (2014) 031102-031106.

DOI: 10.1063/1.4862655

Google Scholar

[43] B.P. Chandra, V.K. Chandra, P. Jha, Elastico-mechanoluminescence of thermoluminescent crystals, Defect and Diffusion Forum 347 (2014) 139-177.

DOI: 10.4028/www.scientific.net/ddf.347.139

Google Scholar

[44] S. M. Jeong, S. Song, S.K. Lee, B. Choi, Mechanically driven light-generator with high durability, Appl. Phys. Lett. 102 (2013) 051110-1-051110-5.

DOI: 10.1063/1.4791689

Google Scholar

[45] S.M. Jeong, S. Song, S.K. Lee, N. Y. Ha, Colour manipulation of mechanoluminescence from stress-activated composite films, Adv. Mater. 25 (2013) 6194-6200.

DOI: 10.1002/adma.201301679

Google Scholar

[46] S. M. Jeong, S. Song, K. Joo, J. Kim, S.H. Hwang, J. Jeong, H. Kim, Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer, Energy Environ. Sci. 7 (2014) 3338-3346.

DOI: 10.1039/c4ee01776e

Google Scholar

[47] B.P. Chandra, J.I. Zink, Triboluminescence and the dynamics of crystal fracture, Phys. Rev. B, 21 (1980) 816-826.

DOI: 10.1103/physrevb.21.816

Google Scholar

[48] B.P. Chandra, J.I. Zink, Mechanical characteristics and mechanism of the triboluminescence of fluorescent molecular crystals, J. Chem. Phys. 73 (1980) 5933-5943.

DOI: 10.1063/1.440151

Google Scholar

[49] G. Alzetta, I. Chudasek, R. Scarmozinno, Excitation of triboluminescence by deformation of single crystals, Phys. Stat. Sol. (a), 1 (1970) 775-785.

DOI: 10.1002/pssa.19700010417

Google Scholar

[50] A.S. Crasto, R. Corey, J.T. Dickinson, R.V. Subramaniam, Y. Eckstein, Correlation of photon and acoustic emission with failure events in model composites, Composites Science and Technology, 30 (1987) 35-58.

DOI: 10.1016/0266-3538(87)90086-8

Google Scholar

[51] I. Grabec, Triboluminescence of rubber, Polym. Lett. Ed. 12 (1974) 573-574.

Google Scholar

[52] V.M. Parfeev, Y. M. Tuta, U.E. Krauya, A.A. Scrukvskis, Damage accumulation in filled organosilicon rubber under pulsating loading, Mekhanika Kompozitnykh Materialov 1 (1988) 125-128.

DOI: 10.1007/bf00611344

Google Scholar

[53] B. P. Chandra, M. Elyas, Luminescence during release of pressure in X-irradiated alkali halide crystals, Kristall Und. Technik. 19 (1978) 1341-1343.

DOI: 10.1002/crat.19780131111

Google Scholar

[54] B.P. Chandra, Mechanoluminescence and high pressure photoluminescence of (Zn, Cd) S phosphors, Pramana-J. Phys. 19 (1982) 455-465.

DOI: 10.1007/bf02847379

Google Scholar

[55] B.P. Chandra, S. Tiwari, M. Ramrakhiani, M.H. Ansari, Mechanoluminescence in centrosymmetric crystals, Cryst. Res. Technol. 26 (1991) 767-781.

DOI: 10.1002/crat.2170260617

Google Scholar

[56] I. Sage, G. Bourhill, Triboluminescent materials for structural damage monitoring, J. Mater. Chem. 11 (2001) 231-245.

DOI: 10.1039/b007029g

Google Scholar

[57] H. Longchambon, Study of the spectrum of the light emitted in the triboluminescence of sugar, J Franklin Institute 195 (1922) 269-270.

Google Scholar

[58] H. Longchambon, Research experiments on the phenomenons of triboluminescence and of crystalloluminescence, Bull. Soc. Fr. Miner. Crystallog. 48 (1925) 130-214.

Google Scholar

[59] G. T. Reynolds, S. Gruner, A high gain image intensifier-spectroscope .. spectral studies of bioluminescence, IEEE Trans. Nucl. Sci. 22 (1975) 404-411.

DOI: 10.1109/tns.1975.4327670

Google Scholar

[60] A. J. Walton, P. Botos, The application of an image intensifier spectroscope in triboluminescent studies, J. Phys. E: Sci. Instrum. 11 (1978) 513-514.

DOI: 10.1088/0022-3735/11/6/005

Google Scholar

[61] G. N. Chapman, J. C. Ramage and A. J. Walton, An improved image intensifier spectrograph for recording triboluminescence spectra, J. Phys. E: Sci. Instrum. 15 (1982) 181-183.

DOI: 10.1088/0022-3735/15/2/009

Google Scholar

[62] L. M. Sweeting, J. L. Guido, J. Lumin. 33 (1985) 167-173.

Google Scholar

[63] L. M. Belyaev, N. Y. Martyshev, Triboluminescence of some alkali halide crystals, Phys. Status Solidi 34 (1969) 57-62.

DOI: 10.1002/pssb.19690340105

Google Scholar

[64] G. E. Hardy, J. I. Zink, Triboluminescence and pressure dependence of the photoluminescence of tetrahedral manganese (II) complexes, Inorg. Chem. 15 (1976) 3061-3065.

DOI: 10.1021/ic50166a026

Google Scholar

[65] A. Granato, K. Lücke, Theory of Mechanical Damping Due to Dislocations, Journal of Applied Physics, 27 (1956) 583-593.

DOI: 10.1063/1.1722436

Google Scholar

[66] F. D. Senchukov and S.Z. Shmurak, Investigation of the mechanism of deformational luminescence, Soviet Physics-Solid State 12 (1970) 6 - 8.

Google Scholar

[67] Y.A. Ossipyan, S.Z. Shmurak, Defects in insulating crystals (edited by Turchkevich, V.M. and schrarts, K.K. ), Proc. Int. Cont. Riga. Zinotne Publishilng House, Riga, Springer Verlag, Berlin, (1981) p.135.

Google Scholar

[68] D.L. Dexter, X-ray coloration of alkali-halides. Phys. Rev. 93 (1954) 985-992.

DOI: 10.1103/physrev.93.985

Google Scholar

[69] M. V. Goldfarb, M.I. Molotskii, S.Z. Shmurak, Difference in dislocation states appearing in the photoplastic effect and in deformation luminescence. Sov. Phys. Solid State 32 (1990) 1392-1394.

Google Scholar

[70] M. I. Molotskii, Excitonic and dislocation processes in mechanical-chemical dissociation of the ionic crystals, Kinetika i Kataliz 22 (1981) 1153-1161.

Google Scholar

[71] W.B. Fowler, Physics of Colour Centres, Pergamon Press, Oxford, 1968, p.188.

Google Scholar

[72] J.J. Markam, Solid State Physics, Suppl. 8, Academic Press, New York, (1966).

Google Scholar

[73] M.I. Molotskii, S.Z. Shmurak, Elementary acts of deformation luminescence, Phys. Lett. A 166 (1992) 286-291.

DOI: 10.1016/0375-9601(92)90378-y

Google Scholar

[74] V.V. Korshunov, F.D. Senchukov, S.Z. Shmurak, Investigation of the temporal characteristics of deformation luminescence, JETP Lett. 13 (1971) 289–292.

Google Scholar

[75] B.P. Chandra, Mechanoluminescence induced by elastic deformation of coloured alkali halide crystals using pressure steps, J. Lumin. 128 (2008) 1217-1224.

DOI: 10.1016/j.jlumin.2007.12.001

Google Scholar

[76] B.P. Chandra, R.N. Baghel, A.K. Luka, P. Singh, Deformation-induced excitation of the luminescence centres in coloured alkali halide crystals, Radiation Effects and Defects In Solids 164 (2009) 500-507.

DOI: 10.1080/10420150802394167

Google Scholar

[77] B.P. Chandra, R.K. Goutam, V.K. Chandra, D.S. Raghuwanshi, A.K. Luka, R.N. Baghel, Mechanoluminescence induced by elastic and plastic deformation of coloured alkali halide crystals at fixed strain rates, Radiation Effects & Defects in Solids 165 (2010).

DOI: 10.1080/10420150.2010.487903

Google Scholar

[78] A.J. Dekker, Solid State Physics, Macmillan & Co Ltd, London (1952).

Google Scholar

[79] S.Z. Shmurak, M.B. Eliasberg, Luminescence of X-ray-irradiated KCl: Cu crystals caused by small deformations, Sov. Phys. Sol. State 9 (1967) 1427-1428.

Google Scholar

[80] G. Alzetta, N. Minnaja, S. Santucci, Piezoluminescence in zinc-sulphide phosphors, Il Nuovo Cim. 23 (1962) 910-913.

DOI: 10.1007/bf02733134

Google Scholar

[81] A.M. Eid, A. Moussa, E.M. El–Adl, K.V. Ettinger, A comparative study on piezo and thermoluminescence of LiF, Egyptian Solids 8 (1986) 148.

Google Scholar

[82] M. Akiyama, C.N. Xu, Y. Liu, K. Nonaka, T. Watanabe, Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity, J. Lumin. 97 (2002) 13-18.

DOI: 10.1016/s0022-2313(01)00419-7

Google Scholar

[83] S.Z. Shmurak, F.D. Senchukov, Interaction of dislocations with electron and hole centres in alkali halide crystals, Sov. Phys. Sol. State 15 (1974) 1985-(1986).

Google Scholar

[84] Y. Hayashiuchi, T. Hagihara, T. Okada, Theory of deformation luminescence in KCl crystals, Phys. Lett. A 147 (1990) 245-249.

DOI: 10.1016/0375-9601(90)90641-z

Google Scholar

[85] B.P. Chandra, M. Ramrakhiani, P. Sahu, A.M. Rastogi, Correlation between deformation bleaching and mechanoluminescence in coloured alkali halide crystals, Pramana – J. Phys. 54 (2000) 287-303.

DOI: 10.1007/s12043-000-0025-1

Google Scholar

[86] M. Elyas, B.P. Chandra, Luminescence during the release of pressure in X-irradiated LiF crystals, Indian J Pure Appl. Phys. 17 (1979) 766 – 767.

Google Scholar

[87] T. Hagihara, Y. Hayashiuchi, Y. Kohima, Y. Yamamoto, S. Ohwaki, T. Okada, Deformation luminescence in gamma-irradiated alkali halides, Phys. Lett. A137 (1989) 213-216.

DOI: 10.1016/0375-9601(89)90215-6

Google Scholar

[88] F.I. Metz, R.N. Schweiger, H.R. Leider, L.A. Girifalco, Stress activated luminescence in X-irradiated alkali halide crystals, J. Phys. Chem. 61 (1957) 86-89.

DOI: 10.1021/j150547a016

Google Scholar

[89] H.R. Leider, Luminescence from X-Ray Colored KBr Crystals during Plastic Deformation, Phys. Rev. 150 (1958) 990-991.

DOI: 10.1103/physrev.110.990

Google Scholar

[90] C.D. Butler, Room temperature deformation luminescence in alkali halides, Phys. Rev. 141 (1966) 750-757.

DOI: 10.1103/physrev.141.750

Google Scholar

[91] N.A. Atari, Piezoluminescence phenomenon, Phys. Lett. A 90 (1982) 93-96.

Google Scholar

[92] B.P. Chandra, S. Singh, B. Ojha, R.G. Shrivastava, Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals, Pramana-J. Phys. 46 (1996) 127-143.

DOI: 10.1007/bf02848229

Google Scholar

[93] A. S. Kruglov, I.A. El-Shanshory, M.K. Matta, On the luminescence of γ-rayed KCl crystals induced by plastic deformation, J. Phys. Soc. Japan 21(1966) 2147-2153.

DOI: 10.1143/jpsj.21.2147

Google Scholar

[94] B.P. Chandra, A.K. Bagri, V.K. Chandra, Mechanoluminescence response to the plastic flow of coloured alkali halide crystals, J. Lumin. 130 (2010) 309–314.

DOI: 10.1016/j.jlumin.2009.09.008

Google Scholar

[95] A.J. Bower, Applied Mechanics of Solids CRC, (2010).

Google Scholar

[96] N.A. Atari, B. Ramani, Piezoluminescence and thermoluminescence spectral shifts in γ-irradiated KBr and KCl crystals, Phys. Stat. Sol (a) 97 (1986) 461-468.

DOI: 10.1002/pssa.2210970218

Google Scholar

[97] S.K. Shende, Studies on the Fracto-Mechanoluminescence of Fluorescent and phosphorescent Crystals, Ph.D. Thesis, 2011, Rani Durgavati University, Jabalpur (M.P. ), India.

Google Scholar

[98] BP Chandra. Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystals, J. Phys. D 17 (1984) 117–23.

DOI: 10.1088/0022-3727/17/1/016

Google Scholar

[99] B.P. Chandra, Luminescence induced by moving dislocations in crystals, Radiation Effects and Defects in Solids 138 (1996) 119-137.

DOI: 10.1080/10420159608211514

Google Scholar

[100] B.P. Chandra, Studies on the characteristics and mechanisms of mechanoluminescence in organic and inorganic crystals, D. Sc. Thesis, (1991), Rani Durgavati University, Jabalpur (M.P. ), India.

Google Scholar

[101] N. Rajput, S. Tiwari, B.P. Chandra, Temperature dependence of pulse-induced mechanoluminescence excitation in coloured alkali halide crystals, Bull. of Mat. Sci. 27 (2004) 505-509.

DOI: 10.1007/bf02707277

Google Scholar

[102] T. Ohgaku, K. Suzuki, K. Inabe, Effect of mechanical factors on fractoluminescence of KCl: Ca2+ crystals after X-ray irradiation at room temperature, Phys. Stat. Sol. (a) 193 (2002) 320–328.

DOI: 10.1002/1521-396x(200209)193:2<320::aid-pssa320>3.0.co;2-7

Google Scholar

[103] T. Ohgaku, S. Nakamura, K. Inabe, Comparative study on mechanoluminescence of irradiated and non-irradiated ionic crystals, Radiation Protection Dosimetry 119 (2006) 98–101.

DOI: 10.1093/rpd/nci610

Google Scholar

[104] S. Nakamura, T. Ohgaku, K. Inabe, Sonoluminescence of X-ray irradiated KCl: Ca2+ during deformation, Materials Science and Engineering A442 (2006) 67–70.

DOI: 10.1016/j.msea.2005.12.083

Google Scholar

[105] P. Jha, B.P. Chandra. Survey of literatures on mechanoluminescence from 1605 to 2013, Luminescence: Journal of Bioluminescence and Chemiluminescence 2014; (DOI 10. 1002/bio. 2647).

DOI: 10.1002/bio.2647

Google Scholar

[106] M. Kalra, S.J. Dhoble and R.S. Kher, Mechanoluminescnce and photoluminescence in gamma irradiated NaCl: Eu, Recent Research in Science and Technology 4(8) (2012) 92-94.

Google Scholar

[107] M. Kalra, R. S. Kher, S. J. Dhoble, A. K. Upadhyay, Mechanoluminescence Studies of Gamma Irradiated Sodium Chloride Single Crystals and Microcrystalline Powder Doped with Terbium, J. Pure Appl. & Ind. Phys. 4 (2014) 43-50.

Google Scholar

[108] B.P. Chandra H. L. Vishwakarma, M. Shrivastav, Luminescence produced during deformation of γ– irradiated KI crystals, Indian J. Phys. 74A (2000) 175-177.

Google Scholar

[109] V.K. Chandra, B.P. Chandra, P. Jha, Models for intrinsic and extrinsic elastico and plastico- mechanoluminescence of solids, J. Lumin. 138 (2013) 267-280.

DOI: 10.1016/j.jlumin.2013.01.024

Google Scholar

[110] B.P. Chandra V.K. Chandra, Piyush Jha, Models for intrinsic and extrinsic fracto-mechanoluminescence of solids, J. Lumin. 135 (2013) 139-153.

DOI: 10.1016/j.jlumin.2012.10.009

Google Scholar

[111] M. Kalra, R.S. Kher, S.J. Dhoble, A.K. Upadhyay, Mechanoluminescence studies of gamma irradiated potessium chloride single crystals and microcrystalline powder doped with terbium, Intern. J. Lumin. Applications 4 (2014) 33-35.

Google Scholar

[112] P. Jha, S.K. Nema, P. K. Singh, M. Ramrakhiani and B. P. Chandra, Pulse – Induced Mechanoluminescence of γ-Irradiated KBr Crystals, International Journal of Luminescence and its Applications 3(II) (2013) 116-118.

Google Scholar

[113] P. B. Hirsch, The structure and electrical properties of dislocations in semiconductors, Journal of Microscopy 118 (1980) 3–12.

Google Scholar

[114] Yu A. Ossipyan, Dislocation microwave electrical conductivity of semiconductors and electron-dislocation spectrum, Krist. Techn. 16 (1981) 239–246.

DOI: 10.1002/crat.19810160219

Google Scholar

[115] S. G. Roberts, D. B. Holt and P. R. Wilshaw (Eds. ), Structure and Properties of Dislocations in Semiconductors, (1989).

Google Scholar

[116] A. I. Gubanov, Calculation of the donor levels related to dislocations, in crystals of type NaCl, Fiz. Tverd. Tela (Leningrad) 21 (1979) 730–734.

Google Scholar

[117] S.Z. Shumarak, Deformational Spectroscopy of alkali halide crystals, Izv. Akad. Nauk. SSSR, Ser. Fiz. 40 (1976) 1886-1892.

Google Scholar

[118] R. Mayer, A. Winnacker, Onthe mechanisms of thermoluminescence and deformation luminescence in gamma-irradiated KCl, Rad. Eff. 64 (1982) 135-141.

DOI: 10.1080/00337578208223004

Google Scholar