pH-Responsive Hyperbranched Copolymers from One-Pot RAFT Copolymerization of Propylacrylic Acid and Poly(ethylene glycol diacrylate)

Article Preview

Abstract:

pH-Responsive polymers have attracted much attention for biotechnology applications as carriers or matrix to facilitate intracellular or extracellular therapeutic drug delivery and release. In this paper, we report the development of new pH-responsive and hyperbranched copolymers with potential for such applications. These pH-responsive hyperbranched copolymers were synthesized via one pot reversible addition-fragmentation chain transfer (RAFT) copolymerization of propylacrylic acid (PAA) and a branching co-monomer poly(ethylene glycol diacrylate) (PEGDA) (Mn=258 Da) at the monomer feed molar ratios [PAA]0/[PEGDA]0 = 99/1, 90/10 and 80/20. The resultant poly(PAA-PEGDA) copolymers were characterized by Proton Nuclear Magnetic Resonance (1H NMR) and Gel Permeation Chromatography (GPC) to obtain the molecular weight, copolymer composition and degree of acrylate functionality. The hydrodynamic dimensions of these copolymers at pH range between 5.0 and 7.4 were studied using Dynamic Light Scattering technique (DLS). Moreover, these hyperbranched copolymers demonstrated composition- and size-dependent membrane disruptive properties by red blood cell hemolysis assay. Poly(PAA-PEGDA) with the copolymer composition [PAA]/[PEGDA]= 68/32, obtained from the copolymerization at the monomer feed molar ratio [PAA]0/[PEGDA]0 = 99/1, demonstrated significant membrane disruptive activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-342

Citation:

Online since:

September 2012

Export:

Price:

[1] Kost, J.; Langer, R. Adv. Drug Delivery Rev. 2001, 46, (1-3), 125-148.

Google Scholar

[2] Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Nature Rev. Drug Discovery 2005, 4, (7), 581-593.

Google Scholar

[3] Kulkarni, S.; Schilli, C.; Muller, A. H. E.; Hoffman, A. S.; Stayton, P. S. Bioconjugate Chem. 2004, 15, (4), 747-753.

Google Scholar

[4] Stayton, P. S.; El-Sayed, M. E. H.; Murthy, N.; Bulmus, V.; Lackey, C.; Cheung, C.; Hoffman, A. S. Orthod Craniofac Res 2005, 8, (3), 219-25.

DOI: 10.1111/j.1601-6343.2005.00336.x

Google Scholar

[5] Langer, R.; Tirrell, D. A. Nature 2004, 428, (6982), 487-492.

Google Scholar

[6] Yessine, M. A.; Leroux, J. C. Adv. Drug Delivery Rev. 2004, 56, (7), 999-1021.

Google Scholar

[7] Hoffman, A. S.; Stayton, P. S.; Press, O.; Murthy, N.; Lackey, C. A.; Cheung, C.; Black, F.; Campbell, J.; Fausto, N.; Kyriakides, T. R.; Bornstein, P. Polym. Adv. Technol. 2002, 13, (10-12), 992-999.

DOI: 10.1002/pat.232

Google Scholar

[8] Hoffman, A. S.; Stayton, P. S. Macromol. Symp. 2004, 207, 139-151.

Google Scholar

[9] Jones, R. A.; Cheung, C. Y.; Black, F. E.; Zia, J. K.; Stayton, P. S.; Hoffman, A. S.; Wilson, M. R. Biochem. J. 2003, 372, 65-75.

Google Scholar

[10] El-Sayed, M. E. H.; Hoffman, A. S.; Stayton, P. S. J. Control. Release 2005, 101, (1-3), 47-58.

Google Scholar

[11] Hoffman, A. S.; Stayton, P. S. Prog. Polym. Sci. 2007, 32, (8-9), 922-932.

Google Scholar

[12] Cheung, C. Y.; Murthy, N.; Stayton, P. S.; Hoffman, A. S. Bioconjugate Chem. 2001, 12, (6), 906-910.

Google Scholar

[13] Cheung, C. Y.; Stayton, P. S.; Hoffman, A. S. J. Biomater. Sci.-Polym. Ed. 2005, 16, (2), 163-179.

Google Scholar

[14] Duvall, C. L.; Convertine, A. J.; Benoit, D. S. W.; Hoffman, A. S.; Stayton, P. S. Mol. Pharm. 2010, 7, (2), 468-476.

Google Scholar

[15] Foster, S.; Duvall, C. L.; Crownover, E. F.; Hoffman, A. S.; Stayton, P. S. Bioconjugate Chem. 2010, 21, (12), 2205-2212.

DOI: 10.1021/bc100204m

Google Scholar

[16] Li, H. M.; Nelson, C. E.; Evans, B. C.; Duvall, C. L. Curr. Pharm. Design 2011, 17, (3), 293-319.

Google Scholar

[17] Stayton, P. S.; Ding, Z.; Hoffman, A. S. Methods in Molecular Biology 2004, 37-43.

Google Scholar

[18] Convertine, A. J.; Benoit, D. S. W.; Duvall, C. L.; Hoffman, A. S.; Stayton, P. S. J. Control. Release 2009, 133, (3), 221-229.

Google Scholar

[19] Crownover, E.; Duvall, C. L.; Convertine, A.; Hoffman, A. S.; Stayton, P. S. J. Control. Release 2011, 155( 2), 167-174

DOI: 10.1016/j.jconrel.2011.06.013

Google Scholar

[20] Yatvin, M. B.; Kreutz, W.; Horwitz, B. A.; Shinitzky, M. Science 1980, 210, (4475), 1253-1254.

DOI: 10.1126/science.7434025

Google Scholar

[21] Gillies, E. R.; Frechet, J. M. J. Drug Discovery Today 2005, 10, (1), 35-43.

Google Scholar

[22] Lee, C. C.; MacKay, J. A.; Frechet, J. M. J.; Szoka, F. C. Nat. Biotechnol. 2005, 23, (12), 1517-1526.

Google Scholar

[23] Satija, J.; Gupta, U.; Jain, N. K. Cri. Rev. Ther. Drug 2007, 24, (3), 257-306.

Google Scholar

[24] Guillaudeu, S. J.; Fox, M. E.; Haidar, Y. M.; Dy, E. E.; Szoka, F. C.; Frechet, J. M. J. Bioconjugate Chem. 2008, 19, (2), 461-469.

DOI: 10.1021/bc700264g

Google Scholar

[25] Cloninger, M. J. Curr. Opin. Chem. Biol. 2002, 6, (6), 742-748.

Google Scholar

[26] Boas, U.; Heegaard, P. M. H. Chem. Soc. Rev. 2004, 33, (1), 43-63.

Google Scholar

[27] Grinstaff, M. W. Chemistry-a European Journal 2002, 8, (13), 2838-2846.

Google Scholar

[28] Stiriba, S. E.; Frey, H.; Haag, R. Angew. Chem.-Int. Edit. 2002, 41, (8), 1329-1334.

Google Scholar

[29] Wolinsky, J. B.; Grinstaff, M. W. Adv. Drug Delivery Rev. 2008, 60, (9), 1037-1055.

Google Scholar

[30] Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, (3), 183-275.

Google Scholar

[31] Jikei, M.; Fujii, K.; Kakimoto, M. Macromol. Symp. 2003, 199, 223-232.

Google Scholar

[32] Frechet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B. Science 1995, 269, (5227), 1080-1083.

DOI: 10.1126/science.269.5227.1080

Google Scholar

[33] Gottschalk, C.; Frey, H. Macromolecules 2006, 39, (5), 1719-1723.

Google Scholar

[34] Camerlynck, S.; Cormack, P. A. G.; Sherrington, D. C.; Saunders, G. J. Macromol. Sci.-Phy. 2005, B44, (6), 881-895.

Google Scholar

[35] O'Brien, N.; McKee, A.; Sherrington, D. C.; Slark, A. T.; Titterton, A. Polymer 2000, 41, (15), 6027-6031.

DOI: 10.1016/s0032-3861(00)00016-1

Google Scholar

[36] Costello, P. A.; Martin, I. K.; Slark, A. T.; Sherrington, D. C.; Titterton, A. Polymer 2002, 43, (2), 245-254.

DOI: 10.1016/s0032-3861(01)00581-x

Google Scholar

[37] Baudry, R.; Sherrington, D. C. Macromolecules 2006, 39, (4), 1455-1460.

Google Scholar

[38] Isaure, F.; Cormack, P. A. G.; Sherrington, D. C. J. Mater. Chem. 2003, 13, (11), 2701-2710.

Google Scholar

[39] Guan, Z. JACS 2002, 124, (20), 5616-5617.

Google Scholar

[40] Isaure, F.; Cormack, P. A. G.; Graham, S.; Sherrington, D. C.; Armes, S. P.; Butun, V. Chem. Commun. 2004, (9), 1138-1139.

Google Scholar

[41] Butun, V.; Bannister, I.; Billingham, N. C.; Sherrington, D. C.; Armes, S. P. Macromolecules 2005, 38, (12), 4977-4982.

Google Scholar

[42] Bannister, I.; Billingham, N. C.; Armes, S. P.; Rannard, S. P.; Findlay, P. Macromolecules 2006, 39, (22), 7483-7492.

DOI: 10.1021/ma061811b

Google Scholar

[43] Wang, W. X.; Zheng, Y.; Roberts, E.; Duxbury, C. J.; Ding, L. F.; Irvine, D. J.; Howdle, S. M. Macromolecules 2007, 40, (20), 7184-7194.

DOI: 10.1021/ma0707133

Google Scholar

[44] Tai, H. Y.; Howard, D.; Takae, S.; Wang, W. X.; Vermonden, T.; Hennink, W. E.; Stayton, P. S.; Hoffman, A. S.; Endruweit, A.; Alexander, C.; Howdle, S. M.; Shakesheff, K. M. Biomacromolecules 2009, 10, (10), 2895-2903.

DOI: 10.1021/bm900712j

Google Scholar

[45] Tai, H. Y.; Wang, W. X.; Vermonden, T.; Heath, F.; Hennink, W. E.; Alexander, C.; Shakesheff, K. M.; Howdle, S. M. Biomacromolecules 2009, 10, (4), 822-828.

DOI: 10.1021/bm801308q

Google Scholar

[46] Dong, Y.; Gunning, P.; Cao, H.; Mathew, A.; Newland, B.; Saeed, A. O.; Magnusson, J. P.; Alexander, C.; Tai, H.Y.; Pandit, A.; Wang, W. X. Poly. Chem. 2010, 1, (6), 757-932.

DOI: 10.1039/c0py00101e

Google Scholar

[47] Newland, B.; Tai, H.Y.; Zheng, Y.; Velasco, D.; Luca, A. D.; Howdle, S. M.; Alexander, C.; Wang, W.X.; Pandit, A. Chem. Commun. 2010, 46, 4698-6700.

DOI: 10.1039/c0cc00439a

Google Scholar

[48] Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, (9), 2921-2990.

Google Scholar

[49] Perrier, S.; Takolpuckdee, P. J. Poly. Sci. Part a-Poly. Chem. 2005, 43, (22), 5347-5393.

Google Scholar

[50] Liu, B. L.; Kazlauciunas, A.; Guthrie, J. T.; Perrier, S. Macromolecules 2005, 38, (6), 2131-2136.

Google Scholar

[51] Vo, C. D.; Rosselgong, J.; Armes, S. P.; Billingham, N. C. Macromolecules 2007, 40, (20), 7119-7125.

DOI: 10.1021/ma0713299

Google Scholar

[52] Ferrito, M.; Tirrell, D. A. Macromol. Synth. 1992, 11, 59-62.

Google Scholar

[53] Moad, G.; Chong, Y. K.; Postma, A.; Rizzardo, E.; Thang, S. H. Polymer 2005, 46, (19), 8458-8468.

DOI: 10.1016/j.polymer.2004.12.061

Google Scholar

[54] Murthy, N.; Robichaud, J. R.; Tirrell, D. A.; Stayton, P. S.; Hoffman, A. S. J. Control. Release 1999, 61, (1-2), 137-143.

Google Scholar

[55] Lackey, C. A.; Murthy, N.; Press, O. W.; Tirrell, D. A.; Hoffman, A. S.; Stayton, P. S. Bioconjugate Chem. 1999, 10, (3), 401-405.

DOI: 10.1021/bc980109k

Google Scholar

[56] Schroeder, U. K. O.; Tirrell, D. A. Macromolecules 1989, 22, (2), 765-769.

Google Scholar

[57] Yin, X.; Hoffman, A. S.; Stayton, P. S. Biomacromolecules 2006, 7, (5), 1381-1385.

Google Scholar

[58] Podzimek, S.; Vlcek, T.; Johann, C. J. Appl. Poly. Sci. 2001, 81, (7), 1588-1594.

Google Scholar

[59] Cho, Y. W.; Kim, J. D.; Park, K. J. Pharmacy and Pharmacology 2003, 55, (6), 721-734.

Google Scholar