Fluidic Physical Sensors and Sensor Systems

Article Preview

Abstract:

Silicon-based MEMS technology has furthered the introduction of sensors and actuators in many applications. Particularly in inertial sensing, where no contact with a medium to be sensed is required, highly reliable and cost-effective solutions have been developed. For application in fluidic environments, special demands regarding the interaction can occur. Also, silicon-based technology is not cost-effective in low-volume applications.In our recent work, we thus consider hybrid technologies and concentrate on physical sensor principles, which often provide more robustness in process control and condition monitoring than dedicated chemical sensors featuring chemical reactions with the environment by means of specific chemical interfaces. The latter are frequently prone to reliability issues, e.g. due to poisoning, drift, etc. Examples for physical parameters are thermal and electrical conductivity, permittivity, viscosity, speed of sound, and density. In this contribution, sensing concepts addressing these target parameters are reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-138

Citation:

Online since:

October 2016

Authors:

Export:

Price:

* - Corresponding Author

[1] B. Jakoby and F. Herrmann. Chemical sensors for liquid media. In: Sensors for Automotive Applications (J. Marek, H. -P. Trah, Y. Suzuki, and I. Yokomori, eds. ), Weinheim: Wiley VCH; 2003, p.516–527.

DOI: 10.1002/3527601422

Google Scholar

[2] F. Herrmann, B. Jakoby, J. Rabe, and S. Büttgenbach. Microacoustic sensors for liquid monitoring, Sensors Update (H. Baltes, J. Hesse, and J. Korvink, eds. ), Weinheim: Wiley VCH, 2001; 9; 105–160.

DOI: 10.1002/1616-8984(200105)9:1<105::aid-seup105>3.0.co;2-i

Google Scholar

[3] M.J. Vellekoop. Physical Chemosensors, Smart Sensor Systems (ed G. C. M. Meijer), John Wiley & Sons, Ltd, Chichester, UK; (2008).

Google Scholar

[4] P. Hauptmann, R. Lucklum, A. Püttmer, B. Henning. Ultrasonic sensors for process monitoring and chemical analysis: state-of-the-art and trends, Sensors and Actuators A: Physical 1998; 67; 32-48.

DOI: 10.1016/s0924-4247(97)01725-1

Google Scholar

[5] B. Jakoby, Physical sensors for fluids, Proc. 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, 2015, pp.686-691, doi: 10. 1109/TRANSDUCERS. 2015. 7181016.

DOI: 10.1109/transducers.2015.7181016

Google Scholar

[6] B. Jakoby and M. J. Vellekoop, Physical Sensors for Liquid Properties, IEEE Sensors Journal, vol. 11, no. 12, pp.3076-3085, Dec. 2011, doi: 10. 1109/JSEN. 2011. 2167716.

DOI: 10.1109/jsen.2011.2167716

Google Scholar

[7] B. Jakoby, A. Ecker, and M.J. Vellekoop, Monitoring macro- and microemulsions using physical chemosensors, Sens. Act. A 2004; 115; 209-214.

DOI: 10.1016/j.sna.2004.02.010

Google Scholar

[8] J.J. Healy, J.J. De Groot, J. Kestin, The theory of the transient hotwire method for measuring thermal conductivity, Physica C 1976; 82; 392–408.

DOI: 10.1016/0378-4363(76)90203-5

Google Scholar

[9] J. Kuntner, F. Kohl, B. Jakoby, Simultaneous thermal conductivity and diffusivity sensing in liquids using a micromachined device, Sensors and Actuators A 2006; 130–131; 62–67.

DOI: 10.1016/j.sna.2005.11.021

Google Scholar

[10] I. Dufour, F. Josse, S. Heinrich, C. Lucat, C. Ayela, F. Ménil, O. Brand. Unconventional uses of microcantilevers as chemical sensors in gas and liquid media, Sensors and Actuators B 2011 in press.

DOI: 10.1016/j.snb.2011.02.050

Google Scholar

[11] B. Weiss, E. K. Reichel, and B. Jakoby. Modeling of a clamped-clamped beam vibrating in a fluid for viscosity and density sensing regarding compressibility, Sensors and Actuators A 2008; 153; 293–301.

DOI: 10.1016/j.sna.2007.11.029

Google Scholar

[12] K. Rijal, R. Mutharasan: Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/mL in liquid medium. Sensors and Actuators B 2007; 124: 237–244.

DOI: 10.1016/j.snb.2006.12.043

Google Scholar

[13] Jian Zhang, Changchun Dai, Xiaodi Su, Sean J. O'Shea: Determination of liquid density with a low frequency mechanical sensor based on quartz tuning fork. Sensors and Actuators B 2002; 84: 123–128.

DOI: 10.1016/s0925-4005(02)00012-6

Google Scholar

[14] Peter Enoksson, Göran Stemme, Erik Stemme: Silicon tube structures for a fluid-density sensor. Sensors and Actuators A 1996; 54: 558-562.

DOI: 10.1016/s0924-4247(97)80014-3

Google Scholar

[15] S.J. Martin, G.C. Frye, K.O. Wessendorf. Sensing liquid properties with thickness-shear mode resonators, Sensors and Actuators A: Physical 1994; 44; 209-218.

DOI: 10.1016/0924-4247(94)00806-x

Google Scholar

[16] F. Herrmann, D. Hahn, S. Büttgenbach: Separate determination of liquid density and viscosity with sagittally corrugated Love-mode sensors. Sensors and Actuators A: Physical 1999; 78: 99-107.

DOI: 10.1016/s0924-4247(99)00224-1

Google Scholar

[17] A.C. Turton, D. Bhattacharyya, D. Wood: High sensitivity Love-mode liquid density sensors. Sensors and Actuators A 2005; 123–124: 267–273.

DOI: 10.1016/j.sna.2005.02.010

Google Scholar

[18] R. Beigelbeck, H. Antlinger, S. Cerimovic, S. Clara, F. Keplinger, B. Jakoby, Resonant pressure wave setup for simultaneous sensing of longitudinal viscosity and sound velocity of liquids. Measurement Science and Technology, 24(12), 2013, 125101.

DOI: 10.1088/0957-0233/24/12/125101

Google Scholar

[19] B. Jakoby, R. Beigelbeck, F. Keplinger, F. Lucklum, A. Niedermayer, E. Reichel, C. Riesch, T. Voglhuber-Brunnmaier, and B. Weiss. Miniaturized sensors for the viscosity and density of liquids - performance and issues, IEEE Trans. on Ultrason., Ferroelec., and Freq. Contr. 2010; 57; 111–120.

DOI: 10.1109/tuffc.2010.1386

Google Scholar

[20] S.J. Martin, G.C. Frye, K.O. Wessendorf. Sensing liquid properties with thickness-shear mode resonators, Sensors and Actuators A: Physical 1994; 44; 209-218.

DOI: 10.1016/0924-4247(94)00806-x

Google Scholar

[21] B. Jakoby and M. J. Vellekoop. Viscosity sensing using a Love wave device, Sens. Actuators A 1998; 68; 275–281.

DOI: 10.1016/s0924-4247(98)00017-x

Google Scholar

[22] B. Jakoby and M.J. Vellekoop. Physical sensors for water-in-oil emulsions, Sens. Act. A, 2004, 110, 28-32.

DOI: 10.1016/j.sna.2003.08.005

Google Scholar

[23] B. Jakoby and N. Dörr, Monitoring phase transitions in microemulsions using impedance and viscosity sensors, Proc. IEEE Sensors 2004, p.627–630, (2004).

DOI: 10.1109/icsens.2004.1426244

Google Scholar

[24] L. R. A. Follens, E. K. Reichel, C. Riesch, J. Vermant, J. A. Martens, C. E. A. Kirschhock, and B. Jakoby. Viscosity sensing in heated alkaline zeolite synthesis media, Phys. Chem. Chem. Phys. 2009; 11; 2854–2857.

DOI: 10.1039/b816040f

Google Scholar

[25] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel and B. Jakoby, Experimental and theoretical evaluation of the achievable accuracies of resonating viscosity and mass density sensors, Proc. IEEE Sensors 2013, Baltimore, MD, 2013, 1-4.

DOI: 10.1109/icsens.2013.6688490

Google Scholar

[26] A.O. Niedermayer, T. Voglhuber-Brunnmaier, J. Sell, B. Jakoby, Methods for the robust measurement of the resonant frequency and quality factor of significantly damped resonating devices. Measurement Science and Technology, 23(8), 2012, 085107.

DOI: 10.1088/0957-0233/23/8/085107

Google Scholar

[27] T. Voglhuber-Brunnmaier, A.O. Niedermayer, R. Beigelbeck, B. Jakoby, Resonance parameter estimation from spectral data: Cramér–Rao lower bound and stable algorithms with application to liquid sensors. Measurement Science and Technology, 25(10), 2014, 105303.

DOI: 10.1088/0957-0233/25/10/105303

Google Scholar

[28] H. Antlinger, S. Clara, R. Beigelbeck, S. Cerimovic, F. Keplinger, B. Jakoby, An acoustic transmission sensor for the longitudinal viscosity of fluids. Sensors and Actuators A: Physical, 202, 2013, 23-29.

DOI: 10.1016/j.sna.2013.03.011

Google Scholar

[29] H. Antlinger, S. Clara, R. Beigelbeck, S. Cerimovic, F. Keplinger, B. Jakoby, Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves. Sensors and Actuators A: Physical, 186, 2012, 94-99.

DOI: 10.1016/j.sna.2012.02.050

Google Scholar

[30] V. M. Lavchiev, B. Jakoby, U. Hedenig, T. Grille, J.M.R. Kirkbride, G.A.D. Ritchie, M-line spectroscopy on mid-infrared Si photonic crystals for fluid sensing and chemical imaging. Optics Express, 24(1), 2016, 262-271.

DOI: 10.1364/oe.24.000262

Google Scholar

[31] V. M. Lavchiev et al., Silicon photonics in the mid-infrared: Waveguide absorption sensors, Proc. IEEE Sensors 2014, Valencia, 2014, 645-648, doi: 10. 1109/ICSENS. 2014. 6985081.

DOI: 10.1109/icsens.2014.6985081

Google Scholar