Bioreduction of Hexavalent Chromium by Bacillus cereus Isolated from Chromite Mine Overburden Soil

Article Preview

Abstract:

The presence of soluble Cr(VI) particularly in the overburden soil samples of the chromite mines area is about 300-500mg Cr(VI)/kg. The level of Cr(VI) in final effluents needs to be reduced to the permissible limit <0.05mg/L (USEPA) using appropriate technology before it is discharged into the soil. Out of 12 bacterial isolates from the mine samples, CSB-9 was proven effective in reducing hexavalent chromium to its trivalent form with its inherent ability to survive proficiently in 200ppm Cr(VI). The isolate, confirmed to be Bacillus cereus, was characterised as gram-positive and capsule forming with the optimum growth at pH 7.0 and 35°C. The process of bioreduction of Cr(VI) using B. cereus was optimized with various parameters, viz., pH, initial concentration, dosage of adsorbent, temperature. The bacterium gave 90% reduction from 100ppm Cr(VI) aqueous feed in 120h at pH 7.0, 35°C using 1% (v/v) cells/mL.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-91

Citation:

Online since:

November 2013

Export:

Price:

* - Corresponding Author

[1] K. Sundar, R. Vidya, A. Mukherjee, N. Chandrasekaran, High chromium tolerant bacterial strains from Palar river basin: impact of tannery pollution, Res. J. Environ. Earth. Sci. 2(2) (2010) 112-117.

Google Scholar

[2] A.P. Das, Occupational Health Assessment of Chromite Toxicity among Indian miners, Indian J. Occup. Environ. Med. 15 (2011) 6-13.

DOI: 10.4103/0019-5278.82998

Google Scholar

[3] L. Philips, L. Iyengar, C. Venkobachar, Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils, J. Environ. Eng. 124(12) (1998) 1165-1170.

DOI: 10.1061/(asce)0733-9372(1998)124:12(1165)

Google Scholar

[4] P.X. Sheng, L.H. Tan, J.P. Chen, Y.P. Ting, Biosorption performance of two brown marine algae for removal of chromium and cadmium, J. Dispersion Sci. Technol. 25(5) (2005) 679-686.

DOI: 10.1081/dis-200027327

Google Scholar

[5] F. Camargo, B.C. Okeke, F.M. Bento, W.T. Frankenberger, Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate, Appl. Soil Ecol. 29 (2005) 193–202.

DOI: 10.1016/j.apsoil.2004.10.006

Google Scholar

[6] V. Raicevic, Z. Golic, B. Lalevic, L. Jovanovic, D. Kikovic, S.A. Mladenovic, Isolation of chromium resistant bacteria from a former bauxite mine area and their capacity for Cr (VI) reduction, Afr. J. Biotechnol. 9(40) (2010) 6727-6732.

Google Scholar

[7] A. Ibrahim, M.A. El-Tayeb, Y.B. Elbadawi, A.A.Al-Salamah, Isolation and characterization of novel potent Cr(VI) reducing alkaliphilic Amphibacillus sp. KSUCr3 from hypersaline soda lakes, Electron. J. Biotechnol. 14(4) (2010) 1-14.

DOI: 10.2225/vol14-issue4-fulltext-4

Google Scholar

[8] C. Quintelas, B. Fonseca, B.Silva, H. Figueiredo, T. Tavares, Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC, Bioresour. Technol. 100 (2009) 220–226.

DOI: 10.1016/j.biortech.2008.05.010

Google Scholar

[9] I. Christ, M. Imseng, E. Tatti, J. Frommer, C. Viti, L. Giovannetti, R. Kretzschmar, Aerobic reduction of chromium(VI) by Pseudomonas corrugata 28: Influence of metabolism and fate of reduced chromium, Geomicrobiol. J. 29(2) (2011) 173-185.

DOI: 10.1080/01490451.2010.539662

Google Scholar

[10] B. Dhal, H.N. Thatoi, N.N. Das, B.D. Pandey, Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of the reduced product, J. Chem. Technol. Biotechnol. 85 (2010) 1471-1479.

DOI: 10.1002/jctb.2451

Google Scholar

[11] S. Dey, A.K. Paul, Occurrence and evaluation of chromium reducing bacteria in seepage water from chromite mine quarries of Orissa, India, J. Wat. Res. Prot. 2 (2010) 380-388.

DOI: 10.4236/jwarp.2010.24044

Google Scholar

[12] R. Francisco, M.C. Alpoim, P.V. Morais, Diversity of chromium resistant and reducing bacteria in a chromium contaminated activated sludge, J. Appl. Microbiol. 92 (2002) 837-843.

DOI: 10.1046/j.1365-2672.2002.01591.x

Google Scholar

[13] J. McLean, T.J. Beveridge, D. Phipps, Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate contaminated site, Environ. Microbiol. 2(6) (2000) 611-619.

DOI: 10.1046/j.1462-2920.2000.00143.x

Google Scholar

[14] F. Shakoori, S. Tabassum, A. Rehman A.R. Shakoori, Isolation and characterization of Cr6+ reducing bacteria and their potential use in bioremediation of chromium containing wastewater, Pak. J. Zool. 42(6) (2010) 651-658.

Google Scholar

[15] S. Focardi, M. Pepi, G. Landi, S. Gasperini, M.Ruta, P. Biasio, S.E. Focardi, Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04, Int. Biodet. Biodeg. 66 (2012) 63-70.

DOI: 10.1016/j.ibiod.2011.11.003

Google Scholar

[16] M. Polti, R.O. García, M.J. Amoroso, C.M. Abate, Bioremediation of chromium (VI) contaminated soil by Streptomyces sp. MC1, J. Basic Microbiol. 48 (2008) 1-8.

DOI: 10.1002/jobm.200800239

Google Scholar

[17] A. Vala, N. Anand, P.N. Bhatt, H.V. Joshi, Tolerance and accumulation of hexavalent chromium by two seaweed associated aspergilla. Mar. Pollut. Bull. 48 (2004) 983–985.

DOI: 10.1016/j.marpolbul.2004.02.025

Google Scholar

[18] T. Fukuda, Y. Ishino, A. Ogawa, K. Tsutsumi, H. Morita, Cr(VI) reduction from contaminated soils by Aspergillus sp.N2 and Penicillium sp.N3 isolated from chromite deposits, J. Gen. Appl. Microbiol. 54 (2008) 295-303.

DOI: 10.2323/jgam.54.295

Google Scholar

[19] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Total protein estimation. J. Biol. Chem. 193 (1951) 265-275.

Google Scholar

[20] Y. Wang, C. Xiao, Factors affecting hexavalent chromium reduction in pure cultures of bacteria, Water. Res. 29(11) (1995) 2467-2474.

DOI: 10.1016/0043-1354(95)00093-z

Google Scholar