The Latest Applications of Chitin and Chitosan in Wastewater Treatment

Article Preview

Abstract:

Chitosan has multiple applications due to its advantages including availability, biocompatibility and biodegradability in food, agriculture, material science and so on. In recent years, chitosan was frequently chosen as absorbent of wastewater and reached a satisfactory effect. It should be noted that it is one of most important links in the environment enhancement chains using chitosan as absorbent of heavy metal in wastewater treatment. Chitosan-molecularly imprinted polymers with favorable absorption ability can meanwhile absorb many heavy metal including Cu2+, Hg+, Mn2+ ion, etc. The aim of this paper is to review their latest development in wastewater treatment for providing helpful guidances for researcher in this field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-157

Citation:

Online since:

February 2013

Export:

Price:

[1] N. Bhaskar, P.V. Suresh, P. Z. Sakhare, N. M. Sachindra, Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery, Enzyme. Microb. Tech. 40 (2007).

DOI: 10.1016/j.enzmictec.2006.10.019

Google Scholar

[2] A. Chandumpai, N. Singhpibulporn, D. Faroongsarng, P. Sornprasit, Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species, Loligo lessoniana and Loligo formosana, Carbohydr. Poly. 58(2004).

DOI: 10.1016/j.carbpol.2004.08.015

Google Scholar

[3] L. A. Cira, S. Huerta, G. M. Hall, K. Shirai, Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery, Process. Biochem. 37(2002)1359-1366.

DOI: 10.1016/s0032-9592(02)00008-0

Google Scholar

[4] T. Imoto, K. A. Yagishita, Simple activity measurement of lysozyme. Agric. Biol. Chem. 35(1971)1154-1156.

DOI: 10.1080/00021369.1971.10860050

Google Scholar

[5] G. H. Jo, W. J. Jung, J. H. Kuk, K. T. Oh, Y. J. Kim, R. D. Park, Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr. Poly. 74 (2008)504-508.

DOI: 10.1016/j.carbpol.2008.04.019

Google Scholar

[6] H. C Zhang, Y. F. Jin, Y Deng, D. F Wang, Y. Y Zhao, Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive fermentation. Carbohyd. Res. 362 (2012) 13-20.

DOI: 10.1016/j.carres.2012.09.011

Google Scholar

[7] R.A. A. Muzzarellia, J. Boudrant, D. Meyer, N. Manno, M. DeMarchis, M.G. Paoletti, Current views on fungal chitin and chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial, Carbohydr. Poly. 87 (2012).

DOI: 10.1016/j.carbpol.2011.09.063

Google Scholar

[8] M.N.V. Ravi Kumar, A review of chitin and chitosan applications, React. Funct. Polym . 46 (2000) 1-27.

Google Scholar

[9] E. Guibal, Interactions of metal ions with chitosan-based sorbents: a review, Sep. Purif. Technol. 38(2004) 43-74.

Google Scholar

[10] M.R. Moreira, M. Pereda, N.E. Marcovich, S. Roura, Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami, J. Food. Sci. 76(2011) 54-63.

DOI: 10.1111/j.1750-3841.2010.01910.x

Google Scholar

[11] Jia. Z, D. Shen, Effect of reaction temperature and reaction time on the preparation of low molecular weight chitosan using phosphoric acid, Carbohydr. Poly. 49 (2002) 393-396.

DOI: 10.1016/s0144-8617(02)00026-7

Google Scholar

[12] A. Murugadoss, A. Chattopadhyay, A green, chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst, Nanotechnology. 19(2008) 1-9.

DOI: 10.1088/0957-4484/19/01/015603

Google Scholar

[13] D.W. Wei, W.P. Qian, Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent, Colloid. Surface. B. 62(2008) 136-142.

DOI: 10.1016/j.colsurfb.2007.09.030

Google Scholar

[14] T.T. Franco, M.G. Peter, Advances in chitin and chitosan research. Polym. Int. 60(2011) 873-874.

DOI: 10.1002/pi.3111

Google Scholar

[15] A.J. Wan, Y. Sun, H.L. Li, Characterization of folate-graft-chitosan as a scaffold for nitric oxide release, Int, J. Biol. Macromol. 43(2008) 415-421.

DOI: 10.1016/j.ijbiomac.2008.07.016

Google Scholar

[16] S.L.F. Ling, C.Y. Yee, H.S. Eng, Remove of cationic dye using deacetylated chitin(chitosan), J. Appl. Polym. Sci. 11(2011)1445-1448.

DOI: 10.3923/jas.2011.1445.1448

Google Scholar

[17] E. Guibal, M. Van Vooren, B.A. Dempsey, J. Roussy, A review of the use of chitosan for the removal of particulate and dissolved contaminants, Sep. Purif. Technol. 41(2006) 2487-2514.

DOI: 10.1080/01496390600742807

Google Scholar

[18] H. Huang, Q. Yuan, X. Yang, Preparation and characterization of metal-chitosan nanocomposites[J], Colloid. Surface. B. 39(2004) 31-37.

Google Scholar

[19] H.K. No, S.P. Meyers, Application of chitosan for treatment of wastewaters, Arch. Environ. Contox. 163(2000) 1-28.

Google Scholar

[20] G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci. 30(2005) 38-70.

DOI: 10.1016/j.progpolymsci.2004.11.002

Google Scholar

[21] K. kurita, T. Sanna, Y. Iwakura, Studies on chitin. VI. Binding of metal cations J Appl Polym Sci. 23(1979) 511-515.

DOI: 10.1002/app.1979.070230221

Google Scholar

[22] X. L. Zhang, H.Y. Niu, S. X. Zhang, Y.Q. Cai, Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples, Anal. Bioanal. Chem. 397 (2010)791-798.

DOI: 10.1007/s00216-010-3592-0

Google Scholar

[23] Y.K. Twu, Y.W. Chen, C.M. Shih, Preparation of silver nanoparticles using chitosan suspensions, Powder. Technol. 185(2008) 251-257.

DOI: 10.1016/j.powtec.2007.10.025

Google Scholar

[24] L.L. Wu, C.S. Shi, L.F. Tian, J. Zhu, A one-pot method to prepare gold nanoparticle chains with chitosan, J. Phys. Chem. C 112 (2008) 319–323.

DOI: 10.1021/jp076733o

Google Scholar

[25] K. Yang, X. Wang, Z. Zhou. J. Xu, J. Weng, Q. Zhang, One-step synthesis and characterisation of chitosan-mediated micro-sized gold nanoplates through a thermal process, Iet. Nanobiotechnol. 1(2007)107-111.

DOI: 10.1049/iet-nbt:20070018

Google Scholar

[26] A. Khan, S. Badshah, C. Airoldi, Biosorption of some toxic metal ions by chitosan modified with glycidylmethacrylate and diethylenetriamine, Chem. Eng J. 171 (2011) 159-166.

DOI: 10.1016/j.cej.2011.03.081

Google Scholar

[27] B.M. Espinosa-Garcia, W.M. Arguelles-Monal, J. Hernandez, Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene, Biomacromolecules. 8(2007) 3355-3364.

DOI: 10.1021/bm700458a

Google Scholar

[28] Q. Yu, S. Deng, G. Yu, Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents, Water. Res. 42(2008) 3089-3097.

DOI: 10.1016/j.watres.2008.02.024

Google Scholar

[29] Q. Li, H.J. Su, T.W. Tan, Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances, Biochem. Eng. J. 38 (2008)212-218.

DOI: 10.1016/j.bej.2007.07.007

Google Scholar

[30] H.J. Su, Z.X. Wang, T.W. Tan, Preparation of a surface molecular-imprinted adsorbent for Ni2+ based on Penicillium chrysogenum, J Chem. Technol. Biot. 80(2005) 439-444.

DOI: 10.1002/jctb.1206

Google Scholar

[31] H. J. Su, Q. Li, T.W. Tan, Double-functional characteristics of a surface molecular imprinted adsorbent with immobilization of nano-TiO2, J Chem Technol. Biot. 81(2006) 1797-1802.

DOI: 10.1002/jctb.1606

Google Scholar

[32] T.W. Tan, X. J He, W.X. Du, Adsorption behaviour of metal ions on imprinted chitosan resin, J. Chem. Technol. Biot. 76(2001) 191-195.

Google Scholar

[33] F. Li, P. Du, W. Chen, S.S. Zhang, Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting, Anal. Chim. Acta. 585(2007).

DOI: 10.1016/j.aca.2006.12.047

Google Scholar

[34] Q. Li, H.J. Su, T.W. Tan, Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent, Process. Biochem. 42(2007) 379-383.

DOI: 10.1016/j.procbio.2006.09.020

Google Scholar

[35] F. Li, H.Q. Jiang, S.S. Zhang, An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium (II)from aqueous solution, Talanta. 71(2007).

DOI: 10.1016/j.talanta.2006.07.023

Google Scholar

[36] G. Q. Fu, J.C. Zhao, H. Yu, L. Liu, B.L. He, Bovine serum albumin-imprinted polymer gels prepared by graft copolymerization of acrylamide on chitosan, React. Funct. Polym . 67(2007) 442-450.

DOI: 10.1016/j.reactfunctpolym.2007.02.006

Google Scholar

[37] L. L. Fan, C.N. Luo, Z. Lv, F. Lu, H. Qiu, Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+, J. Hazard. Mater. 194(2011) 193-201.

DOI: 10.1016/j.jhazmat.2011.07.080

Google Scholar

[38] K.G.R. Nair, P. Madhavan, Chitosan for removal of mercury from water, Fishery. Tech. 21 (1984) 109.

Google Scholar

[39] C. Peniche-covas, L.W. Alwarez, W. Arguelles-Monal, The adsorption of mercuric ions by chitosan, J. Appl. Polym. Sci. 46 (1987) 1147.

DOI: 10.1002/app.1992.070460703

Google Scholar