Optical Absorption Study of Molybdenum Diselenide and Polyaniline and their Use in Hybrid Solar Cells

Article Preview

Abstract:

The optical characterization of Molybdenum diselenide (MoSe2) and polyaniline (PANI) has been carried in the wavelength range 200 nm to 2500 nm. The detailed analysis of the optical properties has been carried out only for a range 200 nm to 800 nm from which the indirect band gap around 1.42 eV for MoSe2 and 1 eV and 2.5 eV for PANI was evaluated. It was interesting to note that π π* transitions lead to two distinct orders of energy gaps. The hybrid cells were fabricated using a photosensitive interface between MoSe2 and PANI. Various parameters of these heterostructure hybrid cells have been evaluated and it was found that the photoconversion efficiency was around 1%. Using the solar cell characteristics, the presence of trapping centers at the n-MoSe2/ p-PANI interface has been confirmed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-253

Citation:

Online since:

February 2013

Export:

Price:

[1] S. N. Gawale, R.M. Mane, S. R. Mane, R.R. Kharade, S. M. Patil and P.N. Bhosale, Archives of Physics Research, 1 (3), (2010) 72.

Google Scholar

[2] Mihir M. Vora, Aditya M. Vora, Chalcogenide Letters 5 (2008) 65.

Google Scholar

[3] Mihir M. Vora and Aditya M. Vora, Cryst. Res. Technol. 42(1), (2007) 50.

Google Scholar

[4] Naoki Kohara, Shiro Nishiwaki, Yasuhiro Hashimoto, Takayuki Negami and Takahiro Wada, Solar Energy Materials and Solar Cells 67(1-4) (2001) 209.

DOI: 10.1016/s0927-0248(00)00283-x

Google Scholar

[5] K. Wood and J. B. Pandey Phys. Rev. Lett. 31 (1973) 1400.

Google Scholar

[6] Mihir M. Vora and Aditya M. Vora Cryst. Res. Technol 41( 8) (2006) 803.

Google Scholar

[7] A. Jagar Waldau, M. Ch. Lux-Steiner, R. Jagar-Waldua, E. Bucher, Springer Procedding 54(1991) 397.

Google Scholar

[8] J. Chen, D. L. Ocer, J. M. Pringle D. R. MacFarlane, C. O. Too, G. Wallace. Electrochemical and Solid-State Letters, 8 (10) 528 (2005).

Google Scholar

[9] S. Licht and D. Peramunage Nature 34 (1990) 28.

Google Scholar

[10] R. Jaman, N. N. Rao and O. Srivastava J. of physics D Appl. Phys 22 (1989) 1153.

Google Scholar

[11] T. Joseph Sahaya Anand, C. Sanjeeviraja and M. Jayachandran, Vacuum 60(4) (2001) 431.

DOI: 10.1016/s0042-207x(00)00225-6

Google Scholar

[12] M. P. Deshpande, M. K. Agarwal, P. D. Patel, D. Laxminarayana, Journal of materials science latters, 18(3) (1999) 233.

Google Scholar

[13] A. M. Chaparro, P. Salvador and A. Mir, J. of Electroanytical chemistry. 412 (1-2) (1996) 79.

Google Scholar

[14] Lynn F. Schneemeyer, Mark S. Wrighton J. Am. Chem. Soc., 102 (23) (1980) 6964.

Google Scholar

[15] Aditya M. Vora, Chalcogenide Letters 5(2008)17.

Google Scholar

[16] V. M. Pathak, K. D. Patel, R. J. Pathak and R. Srivastava, Solar Energy Materials and Solar Cells 73(2) (2002) 117.

DOI: 10.1016/s0927-0248(01)00116-7

Google Scholar

[17] Lynn F. Schneemeyer, Mark S Wrighton, Stacy, J. Michell Angelica Sienko, Applied Physics letters, 36 (8) (1980) 701.

Google Scholar

[18] J. Gobrecht, H. Gerischer, H. Tributsch, Ber Bunsenges. Phys. Chem. 83 (1979) 655.

Google Scholar

[19] Aditya M. Vora, Crystal Research and Technology 42(3) (2007) 286.

Google Scholar

[20] Fu-Ren F. Fan, Hennry S. White, Bob L. wheeler and Allen J. bard, J. Am. Chem. Soc. 120 (1980) 5142.

Google Scholar

[21] Michael Gratzed, Nature, 414(2011) 388.

Google Scholar

[22] P. J. Rostan, J. Mattheis, G. Bilger, U. Rau and J.H. Werner. Thin Solid Films, 480 (2005) 67.

DOI: 10.1016/j.tsf.2004.11.001

Google Scholar

[23] Naoki Kohara, Shiro Nishiwaki, Yasuhiro Hashimoto, Takayuki Negami and Takahiro Wada, Solar Energy Materials and Solar Cells, 67(1-4), (2001) 209.

DOI: 10.1016/s0927-0248(00)00283-x

Google Scholar

[24] Serap Gunes, Helmut Neugebauer, and Niyazi Serdar Sariciftci, Chem. Rev. 107(4) (2007)1324.

Google Scholar

[25] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C. J. Brabec, Advanced Materials, 18(6) (2006) 789.

DOI: 10.1002/adma.200501717

Google Scholar

[26] C. O. Too, G. G. Wallace, A. K. Burrell, G. E. Collis, D. L. Officer, E. W. Bodge, S. G. Brodie, E. J. Evans, Synth Met, 123 (2001) 53.

Google Scholar

[27] Y. J. Ahn, G. W. Kang, I. S. Yeom, S. H. Jin, Synth Met 137(2003) 1447.

Google Scholar

[28] R.A. Flores-Estrella, D.E. Pacheco, M.J. Aguilar Vega1 and Mascha A. Smit, Int. J. Electrochem. Sci. 3 (2008)1065.

Google Scholar

[29] Shuxin Tan, Jin Zhai, Meixiang Wan, Qingbo Meng, Yuliang Li, Lei Jiang, and Daoben Zhu, J. Phys. Chem. B, 108(48) (2004) 18693.

Google Scholar

[30] R. Gangopadhyay. Chem. Mater, 12(3) (2000) 608.

Google Scholar

[31] Yongxiang, J.H. Li, D. Haarer, Synth. Met. 94, (1998) 273.

Google Scholar

[32] Huicheng Sun, Yanhong Luo, Yiduo Zhang, Dongmei Li, Zhexun Yu, Kexin Li, and Qingbo Men, J. Phys. Chem. C, 114 (2010) 11673.

Google Scholar

[33] U. S. Sajeev, C. Joseph Mathai, S. Saravan, Rajeev R Ashokan, S Vankatachalam, Bull. Mater. Sci., 29(2) (2006) 159.

Google Scholar

[34] Jakub Wojturski, Jaroslav Stejskal, Otakar Quadrat, Pavel Kratochvíl and Petr Sáha, Croatica Chemica, Acta, 71(4) 91998) 873.

Google Scholar

[35] Habib Ashassi-Sorkhabi, Elnaz Asghari, and Abdolreza Mirmohseni Iranian Polymer Journal, 17 (9) (2008) 711.

Google Scholar

[36] C. K. Tan and D. J. Blackwood, Sensors and Actuators B: Chemical, 71( 3), 184 (2000).

Google Scholar

[37] Ohyun Kwon and Michael L. McKee, J. Phys. Chem. B, 104 (8) (2000) 1686.

Google Scholar

[38] S. Saravanan, M. R. Anantharaman, S. Venkatachalam, D. K. Avasthi, Vacuum 82 (2008) 56.

Google Scholar

[39] Ziran Liu, Jingran Zhou, Halin Xue, Liang Shen, Huidong Zang, Weiyou Chem, Synthetic Metals 156 (2006) 721.

Google Scholar

[40] P. Y. Stakhira, Ya. I. Vertsimaha, O. I. Aksimentyeva, B. R. Cizh, V. V. Cherpak, Physics and Chemistry of solid state 6(2005) 96.

Google Scholar

[41] W.A. Gazotti, E.M. Girotto, A.F. Nogueira, M. A. De Paoli, Solar Energy Materials & Solar Cells, 69 (2001) 315.

DOI: 10.1016/s0927-0248(00)00397-4

Google Scholar

[42] Y. C. Lee, J. L. Shen, K. W. Chen, W. Z. Lee, S. Y. Hu, K. K. Tiong, Y. S. Huang, Journal of Applied Physics 99(6) (2006) 063706.

Google Scholar

[43] A. A. Al-Hill and B. L. Evans, J of Crystal Growth, 15(2) (1972) 93.

Google Scholar

[44] C. K. Sumesh, K. D. Patel, V. M. Pathak, R. S. Srivastava, Cryst. Res. Technol. 45(9) (2010) 957.

Google Scholar

[45] Sunil H. Chaki , G. K. Solanki, A. J. Patel, S. G. Patel, High Pressure Research, 28(2) (2008) 133 (2008).

Google Scholar

[46] M. Scully, M. C. Petty and A. P. Monkman, Synthetic Metals. 55(1) (1993) 183.

Google Scholar

[47] E. Kymakis, I. Alexandrou, G. A. J. Amaratunga, J. Appl. Phys. 93 (2003)1764.

Google Scholar

[48] R. A. Street, T. M. Searlr, I. G. Austin and R. S. Sussmann J. Physics C: Solid State Phys. 7, (1974) 1582.

Google Scholar

[49] R. Coechoorn and C. Hass, R. A. de Groot Physical review B. 35(12) (1987) 6208.

Google Scholar

[50] Wise Donald L (ed. ) 1998 Photonic polymer systems, fundamentals methods and applications (New York: Marcel DekkerInc. ).

Google Scholar

[51] Srinivasan Palaniappan and Chellachamy Anbalagan Amarnath, New J. Chem., 26 (2002) 1671 (2002).

Google Scholar

[52] P. D. Gaikwad, D. J. Shirale, V. K. Gade, P. A. Savale, H. J. Kharat, K. P. Kakde, S. S. Hussaini, N. R. Dhumane and M. D. Shirsat, Bull. Mater. Sci., (29) 2 (2006) 169.

DOI: 10.1007/bf02704611

Google Scholar

[53] Shuxin Tan, Jin Zhai, Bofei Xue, ‡ Meixiang Wan, Qingbo Meng, Yuliang Li, Lei Jiang and Daoben Zhu Langmuir 20 (2004) 2934.

Google Scholar

[54] Elmer-Rico E. Mojica, Jejynne P. Tamayo and Jose Rene L. Micor World Applied Science Journal 2 (5) (2007) 523.

Google Scholar

[55] Ekarat Detsri , Stephan Thierry Dubas, Journal of Metals, Materials and Minerals. 19 (1) (2009) 39.

Google Scholar

[56] Mohammad Reza Nabid, Maryam Golbabaee, Abdolmajid Bayandori Moghaddam, Rassoul Dinarvand, Roya Sedghi Int. J. Electrochem. Sci., 3 (2008)1117.

Google Scholar

[57] Parveen saini, Hema Bhandari, Veena Chaudhray, S. K. Dhavan, Indian journal of engineering and material science 15 (2008) 497.

Google Scholar

[58] T. Prakash, S. A. Narayan dass and K. Prem Nazeer, Bull. Mater. Sci. 25 (6) (2002) 521.

Google Scholar

[59] Kum Huang, Hongjin Qui and Meixiang Wan Macromolecules 35(23) (2002) 8653.

Google Scholar

[60] Di Wei and Gehan Amaratunga, Int. J. Electrochem. Sci., 2 (2007) 897.

Google Scholar

[61] Weing Wang and E. A. Schiff, Applied Physics letters 91, (2007) 133504.

Google Scholar

[62] S. N. Gawale, R. M. Mane, A. M. Sargar, S. R. Mane, R. R. Kharade, P. N. Bhosale, Archives of Applied Science Research, 2(1) (2010) 218.

Google Scholar

[63] Martin A. Green, Solar cells operating principles, technology and system applications, Prentice-Hall, Inc., Englandwoood Cliffs, N.J. 07632, (1982).

Google Scholar

[64] Assefa Sergawie, Teketel Yohannes, Serap Günes, Helmut Neugebauer and Niyazi S. Sariciftci, J. Braz. Chem. Soc., 18(6) (2007) 1193.

DOI: 10.1590/s0103-50532007000600013

Google Scholar

[65] W.A. Gazotti, E.M. Girotto, A.F. Nogueira, M.A. De Paoli, Solar Energy Materials & Solar Cells 69 (2001) 315.

DOI: 10.1016/s0927-0248(00)00397-4

Google Scholar

[66] Gordan G. Wallace, Paul C. Dastoor, David L. Officer, Chee O. Too, Chemical Innovation 30(1) (2000) 14.

Google Scholar

[67] Yiya Peng, Zhaoyu Meng, Chang Zhong, Jun Lu, Weichao Yu, YunBo Jia and Yitai Qian, Chemistry Letters, 30 (2001) 772.

Google Scholar

[68] T. E. Frautak, D. Canceled and B. A. Parkinson, J. of Appl. Phys, 51(1980) 6018.

Google Scholar

[69] G. Razzini, M. Lazzari, L. Peraldo Bicelli, F. Leavy, L. De Angelis, F. Galluzzi, E. Scrosati, Journal of Power Sources, 6(4) (1981) 371.

DOI: 10.1016/0378-7753(81)80041-9

Google Scholar

[70] P. P. Hankare, A.A. Patil, P.A. Chate, K.M. Garadkar, D.J. Sathe, A.H. Manikshete and I.S. Mulla, Journal of Crystal Growth, 311(1) (2008) 15.

DOI: 10.1016/j.jcrysgro.2008.09.188

Google Scholar

[71] S. Y. Hu, C.H. Liang, K. K. Tiong Y. S. Huang, Journal of Alloys and Compounds, 442(1-2), (2007) 249.

Google Scholar

[72] Wolfgang Kautek and Heinz Gerischer, Surface Science, 119(1) (1962) 46.

Google Scholar

[73] Weining Wang, Eric Schiff and Qi Wang, Journal of Non-Crystline Solids, 354 (2008)2862 (2008).

Google Scholar

[74] G. K. Solanki, M. P. Deshpande, P. D. Patel and M. K. Agrawal, Bulletin of Electrochemistry, 19(10), (2003) 460.

Google Scholar

[75] Masafumi Yamaguchi, Aurangzeb Khan, Stephen J. Taylor, Koshi Ando, Tsutomu Yamaguchi, Sumio Matsuda, and Takashi Aburaya, Appl. Phys. 86, (1999) 217.

Google Scholar

[76] H. S. Patel, J. R. Rathod, K. D. Patel, V. M. Pathak and R. Srivastava, J. nano-electron phys. 3(1) (2011) 741.

Google Scholar