A Cheap Synthetic Route to Commercial Ruthenium N3 Dye for Sensitizing Solar Cell Applications

Article Preview

Abstract:

Dye-sensitized Solar Cells (DSCs) Have Received Widespread Attention Owing to their Low Cost, Easy Fabrication, and Relatively High Solar-to-electricity Conversion Efficiency. Based on the Tio2 Electrode, Ruthenium Complex Dye, Liquid Electrolyte, and Pt Counter Electrode, Dscs Have Already Exhibited an Efficiency above 11% and Offer an Appealing Alternative to Conventional Solar Cells. however, until now the Commercial and Well Known Standard Dye Is the Ruthenium Complex, Namely, Cis-bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'dicarboxylato)ruthenium(II) (N3) which Has Been Widely Used around the Word. in this Article, N3 Standard Dye Was Synthesized and Characterized by Two Synthetic Routes: Grätzel’s Protocol and a One-pot Reaction from Cheap and Easily Prepared Starting Materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 488-489)

Pages:

1049-1054

Citation:

Online since:

March 2012

Export:

Price:

[1] K. Zweibel: Chem. Eng. News Vol. 64 (1986), p.34.

Google Scholar

[2] Y. Wang, L. Wang and D. H. Waldeck: J. Phys. Chem. C Vol. 115 (2011), p.18136.

Google Scholar

[3] W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey and O. Gunawan: Chem. Mater. Vol. 22 (2009), p.1010.

Google Scholar

[4] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[5] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Grätzel: J. Am. Chem. Soc. Vol. 115 (1993), p.6382.

DOI: 10.1021/ja00067a063

Google Scholar

[6] M. Grätzel: Acc. Chem. Res. Vol. 42 (2009), p.1788.

Google Scholar

[7] A. Reynal, A. Forneli and E. Palomares: Energy Environ. Sci. Vol. 3 (2010), p.805.

Google Scholar

[8] X. Lv, F. Wang and Y. Li: ACS Appl. Mater. Interfaces Vol. 2 (2010), p. (1980).

Google Scholar

[9] D. Kuang, S. Uchida, R. Humphry-Baker, Shaik M. Zakeeruddin and M. Grätzel: Angew. Chem. Int. Ed. Vol. 47 (2008), p. (1923).

DOI: 10.1002/anie.200705225

Google Scholar

[10] H. Imahori, T. Umeyama and S. Ito: Acc. Chem. Res. Vol. 42 (2009), p.1809.

Google Scholar

[11] H. -P. Lu, C. -L. Mai, C. -Y. Tsia, S. -J. Hsu, C. -P. Hsieh, C. -L. Chiu, C. -Y. Yeh and E. W. -G. Diau: Phys. Chem. Chem. Phys. Vol. 11 (2009), p.10270.

DOI: 10.1039/b917271h

Google Scholar

[12] G. R. A. Kumara, S. Kaneko, M. Okuya, B. Onwona-Agyeman, A. Konno and K. Tennakone: Sol. Energ. Mat. Sol. Cells Vol. 90 (2006), p.1220.

DOI: 10.1016/j.solmat.2005.07.007

Google Scholar

[13] Y. Luo, D. Li and Q. Meng: Adv. Mater. Vol. 21 (2009), p.4647.

Google Scholar

[14] Y. Sun, A. C. Onicha, M. Myahkostupov and F. N. Castellano: ACS Appl. Mater. Interfaces Vol. 2 (2010), p. (2039).

Google Scholar

[15] R. Adams and S. Miyano: J. Am. Chem. Soc. Vol. 76 (1954), p.3168.

Google Scholar

[16] F. Justaud, G. Argouarch, S. I. Ghazala, L. Toupet, F. Paul and C. Lapinte: Organometallics Vol. 27 (2008), p.4260.

Google Scholar

[17] K. Y. Liu, C. L. Hsu, S. H. Chang, J. G. Chen, K. C. Ho and K. F. Lin: J. Polym. Sci., Part A: Polym. Chem. Vol. 48 (2010), p.366.

Google Scholar

[18] O. Schwarz, D. van Loyen, S. Jockusch, N. J. Turro and H. Dürr: J. Photochem. Photobiol. A: Chem. Vol. 132 (2000), p.91.

Google Scholar