Surface Topography of Vinyltriethoxysilane Films Deposited on the Silicon Dioxide Substrate (0001) Investigated by Atomic Force Microscopy

Article Preview

Abstract:

The surface topography and growth behavior of self-assembled monolayers (SAMs) formed from vinyltriethoxysilane (VTES) at a constant temperature (20°C) on silicon dioxide substrates were investigated using atomic force microscopy (AFM). Two methods for silanization were introduced: vapor phase deposition and deposition from a solution. The influence of deposition conditions on the topography of silane films was also studied. The property of modified SiO2 substrates surface was characterized by static water contact angle measurements. The experimental results revealed that the silane films deposited from the solution method grew via islands, whereas this is not the case for vapor phase deposition. The roughness of the layers deposited via solution method first decreased and then increased with the VTES concentration increasing, while the roughness of the layers deposited via vapor phase increased straight. Furthermore, the adsorption types for silane being adsorbed on SiO2 substrates were also investigated. The results indicated that there were two adsorption types in both deposition processes: physisorption and chemisorption.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

513-522

Citation:

Online since:

December 2011

Export:

Price:

[1] S. Ahmad, A.P. Gupta, E. Sharmin, M. Alam, and S.K. Pandey: Prog. Org. Coat. Vol. 54 (2005), p.248

Google Scholar

[2] S.M. Mirabedini, M. Sabzi, J. Zohuriaan-Mehr, M. Atai, and M. Behzadnasab: Appl. Surf. Sci. Vol. 257 (2011), p.4196

DOI: 10.1016/j.apsusc.2010.12.020

Google Scholar

[3] A. Krysztafkiewicz, S. Binkowski, and A. Dec: Dyes Pigm. Vol. 60 (2004), p.233

Google Scholar

[4] T. Nihei, A. Dabanoglu, T. Teranaka, S. Kurata, K. Ohashi, Y. Kondo, N. Yoshino, R. Hickel, and K.-H. Kunzelmann: Dent. Mater. Vol. 24 (2008), p.760

DOI: 10.1016/j.dental.2007.09.001

Google Scholar

[5] C. Hoffmann, and G.E.M. Tovar: J. Colloid Interface Sci. Vol. 295 (2006), p.427

Google Scholar

[6] T. Nakagawa, T. Tanaka, D. Niwa, T. Osaka, H. Takeyama, and T. Matsunaga: J. Biotechnol. Vol. 116 (2005), p.105

Google Scholar

[7] L. Yang, and Y. Li: Biosensors and Bioelectronics Vol. 20 (2005), p.1407

Google Scholar

[8] S. Hou, M.L. Kasner, S. Su, K. Patel, and R. Cuellari: J. Phys. Chem. C Vol. 114 (2010), p.14915

Google Scholar

[9] N. Faucheux, R. Schweiss, K. Lützow, C. Werner, and T. Groth: Biomaterials Vol. 25 (2004), p.2721

DOI: 10.1016/j.biomaterials.2003.09.069

Google Scholar

[10] R. Kapur, and A.S. Rudolph: Exp. Cell Res. Vol. 244 (1998), p.275

Google Scholar

[11] W.R. Ashurst, C. Yau, C. Carraro, R. Maboudian, and M.T. Dugger: J. Microelectromech. Syst. Vol. 10 (2001), p.41

Google Scholar

[12] K.C. Popat, S. Sharma, R.W. Johnson, and T.A. Desai: Surf. Interface Anal. Vol. 35 (2003), p.205

Google Scholar

[13] B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, and P. Hoffmann: Ultramicroscopy Vol. 105 (2005), p.176

Google Scholar

[14] M. Nakano, T. Ishida, H. Sano, H. Sugimura, K. Miyake, Y. Ando, and S. Sasaki: Appl. Surf. Sci. Vol. 255 (2008), p.3040

Google Scholar

[15] R.P. Singh, J.D. Way, and S.F. Dec: J. Membr. Sci. Vol. 259 (2005), p.34

Google Scholar

[16] N. Kim, D.H. Shin, and Y.T. Lee: J. Membr. Sci. Vol. 300 (2007), p.224

Google Scholar

[17] A.F. Ismail, T.D. Kusworo, and A. Mustafa: J. Membr. Sci. Vol. 319 (2008), p.306

Google Scholar

[18] T. Manifar, A. Rezaee, M. Sheikhzadeh, and S. Mittler: Appl. Surf. Sci. Vol. 254 (2008), p.4611

Google Scholar

[19] D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen: Thin Solid Films Vol. 515 (2006), p.1433

DOI: 10.1016/j.tsf.2006.04.006

Google Scholar

[20] A. Hozumi, H. Taoda, T. Saito, and N. Shirahata: Surf. Interface Anal. Vol. 40 (2008), p.408

Google Scholar

[21] S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone: J. Colloid Interface Sci. Vol. 321 (2008), p.235

DOI: 10.1016/j.jcis.2007.12.041

Google Scholar

[22] K.C. Vrancken, L. De Coster, P. Van Der Voort, P.J. Grobet, and E.F. Vansant: J. Colloid Interface Sci. Vol. 170 (1995), p.71

DOI: 10.1006/jcis.1995.1073

Google Scholar

[23] V. Dugas, and Y. Chevalier: J. Colloid Interface Sci. Vol. 264 (2003), p.354

Google Scholar

[24] E. Péré, H. Cardy, V. Latour, and S. Lacombe: J. Colloid Interface Sci. Vol. 281 (2005), p.410

Google Scholar

[25] S. Sun, C. Li, L. Zhang, H.L. Du, and J.S. Burnell-Gray: Eur. Polym. J. Vol. 42 (2006), p.1643

Google Scholar

[26] S.A. Kulkarni, and K.P. Vijayamohanan: Surf. Sci. Vol. 601 (2007), p.2983

Google Scholar

[27] J. Dong, A. Wang, K.Y.S. Ng, and G. Mao: Thin Solid Films Vol. 515 (2006), p.2116

Google Scholar

[28] N. Rozlosnik, M.C. Gerstenberg, and N.B. Larsen: Langmuir Vol. 19 (2003), p.1182

Google Scholar

[29] Y.-Z. Du, L.L. Wood, and S.S. Saavedra: Mater. Sci. Eng., C Vol. 7 (2000), p.161

Google Scholar

[30] I. Doudevski, W.A. Hayes, J.T. Woodward, and D.K. Schwartz: Colloids Surf., A Vol. 174 (2000), p.233

Google Scholar

[31] K.-i. Iimura, Y. Nakajima, and T. Kato: Thin Solid Films Vol. 379 (2000), p.230

Google Scholar

[32] F. Schreiber: Prog. Surf. Sci. Vol. 65 (2000), p.151

Google Scholar

[33] C. Rill, A. Glaser, J. Foisner, H. Hoffmann, and G. Friedbacher: Langmuir Vol. 21 (2005), p.6289

Google Scholar