Structural and Mechanical Properties of Ti1-XAlxN Studied by Ab Initio

Article Preview

Abstract:

Ti1-xAlxN films have been shown to exhibit superior mechanical and thermal properties and are thus widely used for industrial applications. We have studied the structural and mechanical properties of fcc-TiN and fcc-Ti1-xAlxN solid solution (x=0.25 and x=0.5), using first principles calculations based on the density functional theory. These calculations provide the lattice parameter, total energy, cohesive energy, elastic constants, etc, of the TiN lattice and when Al atoms replace Ti atoms in the TiN lattice. With regard to the cohesive energy of TiN and fcc-Ti1-xAlxN, we can obtain that the fcc-Ti1-xAlxN is metastable. Via comparation and analysis, it’s shown that the lattice parameter, cohesive energy and elastic constants decrease with increasing the content of Al. However, ductile behavior is promoted by Al addition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

3331-3337

Citation:

Online since:

November 2011

Export:

Price:

[1] M.M. Stack, Y. Purandare, and P. Hovsepian, Impact angle effects on the erosion–corrosion of superlattice CrN/NbN PVD coatings, Surf. Coat. Technol. Vol. 188–189, pp.556-565, November- December (2004).

DOI: 10.1016/j.surfcoat.2004.07.075

Google Scholar

[2] V.I. Gorokhovsky, C. Bowman, P.E. Gannon, D. VanVorous, A.A. Voevodin, C. Muratore, Y.S. Kang, and J.J. Hu, Deposition and characterization of hybrid filtered arc/magnetron multilayer nanocomposite cermet coatings for advanced tribological applications, Wear Vol. 256 Issues 5–6, pp.741-755, August (2008).

DOI: 10.1016/j.wear.2008.01.003

Google Scholar

[3] J. Y. Rauch, C. Rousselot, and N. Martin, Structure and composition of TixAl1−xN thin films sputter deposited using a composite metallic target, Surf Coat Technol, Vol. 157, pp.138-143, August (2002).

DOI: 10.1016/s0257-8972(02)00146-9

Google Scholar

[10] E. Vancoille, J.P. Celis, and J.R. Roos, Mechanical properties of heat treated and worn PVD TiN, (Ti, Al)N, (Ti, Nb)N and Ti(C, N) coatings as measured by nanoindentation, Thin Solid Films, Vol. 224, Issue 2, pp.168-176, March (1993).

DOI: 10.1016/0040-6090(93)90428-r

Google Scholar

[5] O. Knotek, W.D. Münz and T. Leyendecker, Industrial deposition of binary, ternary and quaternary nitrides of titanium, zirconium and aluminum, J. Vac. Sci. Technol. Vol. A5, p.2173– 2179, (1987).

DOI: 10.1116/1.574948

Google Scholar

[6] W. -D. Munz, Titanium aluminum nitride films: a new alternative to TiN coatings, J. Vac. Sci. Technol, A Volume 4, Issue 6, pp.2717-2725, November (1986).

Google Scholar

[7] Welsch G, Kahveci A I. Oxidation of high temperature intermetallics, The Minerals, Metals &. Materi-als Society, USA, p.207, (1987).

Google Scholar

[8] Jeon G. Han, Joo S. Yoon, Hyung J. Kim, Keon Song, High temperature wear resistance of (TiAl)N films synthesized by cathodic arc plasma deposition Surface and Coatings Technology, Volumes 86-87, Part 1, pp.82-871 December (1996).

DOI: 10.1016/s0257-8972(96)02964-7

Google Scholar

[9] K.L. Lin M.Y. Hwang,and C.D. Wu, The deposition and wear properties of cathodic arc plasma deposition TiAIN deposits, Materials Chemistry and Physics, Volume 46, Issue 1, pp.77-83 October (1996).

DOI: 10.1016/0254-0584(96)80134-9

Google Scholar

[10] P.H. Mayrhofer, F.D. Fischer, H.J. Böhm, C. Mitterer, and J.M. Schneider, Energetic balance and kinetics for the decomposition of supersaturated Ti1−xAlxN, Acta Materialia, Volume 55, Issue 4, pp.1441-1446, February (2007).

DOI: 10.1016/j.actamat.2006.09.045

Google Scholar

[11] S. PalDey, and S.C. Deevi, Properties of single layer and gradient (Ti, Al)N coatings, Mater. Sci. Eng. Vol. 361, pp.1-8, November (2003).

DOI: 10.1016/s0921-5093(03)00473-8

Google Scholar

[12] A. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, Metastable Ti1-xAlxN films with different Al content, Journal of Materials Science Letters, Vol. 19, pp.601-602, (2000).

Google Scholar

[13] Min Zhou, Y. Makino, M. Nose, and K. Nogi, Phase transition and properties of Ti-Al-N thin films prepared by r. f. -plasma assisted magnetron sputtering, Thin Solid Films, Vol. 339, pp.203-208, February (1999).

DOI: 10.1016/s0040-6090(98)01364-9

Google Scholar

[14] S. Inamura, K. Nobugai, and F. Kanamaru. The preparation of NaCl-type Ti1−xAlxN solid solution, Journal of Solid State Chemistry, Vol. 68, Issue 1, pp.124-127, May (1987).

DOI: 10.1016/0022-4596(87)90293-3

Google Scholar

[15] L. Marques, S. Carvalho, F. Vaz, M.M.D. Ramos, and L. Rebouta, ab-initio Study of the properties of Ti1-x-ySixAlyN solid solution, Vacuum, Vol. 83, n 10, pp.1240-1243, June (2009).

DOI: 10.1016/j.vacuum.2009.03.011

Google Scholar

[16] Chen Kuiying, L.R. Zhao, John Rodgers, and John S. Tse, Alloying effects on elastic properties of TiN-based nitrides, Journal of Physics D: Applied Physics, Vol. 36, n 21, pp.2725-2729, November 7, (2003).

DOI: 10.1088/0022-3727/36/21/021

Google Scholar

[17] Zhao Lin Ruo, K. Chen, Q. Yang, J.R. Rodgers, and S.H. Chiou, Materials informatics for the design of novel coatings, Surface and Coatings Technology, Vol. 200, pp.1595-1599, November 21, (2005).

DOI: 10.1016/j.surfcoat.2005.08.097

Google Scholar

[18] Wang Qiang, The first principle research of ProPerities of TiN and TiC, CNKI: CDMD: 2. 2008. 061908.

Google Scholar

[19] S.S. Carara, L.A. Thesing, and P. Piquini, First principles study of vacancies and Al substitutional impurities in δ-TiN, Thin Solid Films, Vol. 515 p.2730–2733, (2006).

DOI: 10.1016/j.tsf.2006.03.028

Google Scholar

[20] R.F. Zhang, and S. Veprek, Metastable phases and spinodal decomposition in Ti1−xAlxN system studied by ab initio and thermodynamic modeling, a comparison with the TiN–Si3N4 system, Materials Science and Engineering A, Vol. 448, p.111–119, March (2007).

DOI: 10.1016/j.msea.2006.10.012

Google Scholar

[21] S. Carvalho, E. Ribeiro, L. Rebouta, F. Vaz, E. Alves, D. Schneider, and A. Cavaleiro, Effects of the morphology and structure on the elastic ehavior of (Ti, Si, Al)N nanocomposites, Surface and Coatings Technology, Vol. 174 –175, p.984–991, (2003).

DOI: 10.1016/s0257-8972(03)00386-4

Google Scholar

[22] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shin, and S.A. Barnett, J. Appl. Phys. Vol. 72, p.1805, (1992).

Google Scholar

[23] A.Y. Liu, and M.L. Cohen, Prediction of New Low Compressibility Solids, Science, Vol. 245, pp.841-842, August (1989).

DOI: 10.1126/science.245.4920.841

Google Scholar

[24] P.W. Shum, K.Y. Li, Z.F. Zhou, and Y.G. Shen, Structural and mechanical properties of titanium–aluminium–nitride films deposited by reactive close-field unbalanced magnetron sputtering, Surface and Coatings Technology, Vol. 185, Issues 2-3, , Pages 245-253 22 July (2004).

DOI: 10.1016/j.surfcoat.2003.12.011

Google Scholar

[25] J.M. Castanho, and M.T. Vieira, Effect of ductile layers in mechanical behaviour of TiAlN thin coatings, Journal of Materials Processing Technology, Vol. 143-144, pp.352-357, 20 December (2003).

DOI: 10.1016/s0924-0136(03)00454-0

Google Scholar

[26] Yingyuan Teng, Shenglong Zhu, Fangying Zhang, Mingsheng Li, Fuhui Wang, and Weitao Wu, Electronic structure, lattice constant, optical and mechanical properties for NaCl-structured Ti-Al-N by density functional theory, Physica B: Condensed Matter, Vol. 358, n 1-4, pp.77-85, April (2005).

DOI: 10.1016/j.physb.2004.12.029

Google Scholar

[27] A. Arya, and Emily A. Carter, Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles, Journal of Chemical Physics, Vol. 118, n 19, pp.8982-8996, May 15, (2003).

DOI: 10.1063/1.1565323

Google Scholar

[28] Ru Qiang, Huang Nacan, Hu Shejun, Hu Xianqi, and Sheng Gang, Research progress of TiN coated multiple layer enhancement, Tool Technology, Vol. 38, p.3~8, August (2004).

Google Scholar

[29] U. Wahlström, L. Hultman, J. -E. Sundgren, F. Adibi, I. Petrov, and J.E. Greene. Crystal growth and microstructure of polycrystalline Ti1−xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering, Thin Solid Files, Vol. 235, p.62, November (1993).

DOI: 10.1016/0040-6090(93)90244-j

Google Scholar

[30] Seung-Hoon Jhi, Jisoon Ihm, Steven G. Louie, and Marvin L. Cohen, Electronic mechanism of hardness enhancement in transition-metal carbonitrides, Nature, Vol. 399, pp.132-134, May (1999).

DOI: 10.1038/20148

Google Scholar

[31] Z. -J. Liu, P.W. Shum, and Y.G. Shen, Hardening mechanisms of nanocrystalline Ti–Al–N solid solution films, Thin Solid Films, Vol. 468, p.161–166, (2004).

DOI: 10.1016/j.tsf.2004.05.087

Google Scholar

[32] D.G. Clerc, and H.M. Ledbetter, Mechanical hardness: A semiempirical theory based on screened electrostatics and elastic shear, J. Phys. Chem. Solids, Vol. 59, pp.1071-1095, June-July (1998).

DOI: 10.1016/s0022-3697(97)00251-5

Google Scholar

[33] S.F. Pugh, Philos. Mag. Vol. 45, pp.823-843, (1954).

Google Scholar

[34] Kuiying Chen, and Linruo Zhao, Elastic properties, thermal expansion coefficients andelectronic structures of Ti0. 75X0. 25C carbides, Journal of Physics and Chemistry of Solids, Vol. 68, pp.1805-1811, (2007).

DOI: 10.1016/j.jpcs.2007.05.008

Google Scholar