Cr Bioaccumulation and its Effects on Nutrient Elements Uptake and Oxidative Response in Corbicula Fluminea Exposed to Hexavalent Chromium

Article Preview

Abstract:

Though C. fluminea is always used as a biomonitor to evaluate the aquatic environment, the adaptive mechanism to chromium is far from clear. In this paper, an acute toxicity experiment was conducted to study the alterations in Cr accumulation, nutrient uptake and oxidative response in Corbicula fluminea exposed to Cr6+. Cr content increased in C. fluminea with the increase of exterior Cr6+ concentration while the Cr bioaccumulation factor decreased. The Cr6+ application disturbed the uptake of Zn, P, Cu, Fe, and Mn content. Increased malondialdehyde (MDA) and decreased catalase activity were detected in whole body, mantle, viscera and pleopod. The MDA accumulation in these organs is in sequence, viscera > mantal > whole body > pleopod, suggesting viscera is more sensitive to Cr than other organs. The results also indicate that Cr6+ stress disturbs the balance of nutrient uptake and causes the lipid peroxidation in C. fluminea.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

975-980

Citation:

Online since:

September 2011

Export:

Price:

[1] A. Shanker, C. Cervantes, H. Loza-Tavera, S. Avudainayagam. Chromium toxicity in plants. Environ Int., vol. 31, no. 5, pp.739-53. (2005).

Google Scholar

[2] M. Valko, H. Morris, M. Cronin, Metals, toxicity and oxidative stress. Curr. Med. Chem., vol. 12, p.1161–1208, (2005).

DOI: 10.2174/0929867053764635

Google Scholar

[3] O. Lushchak, O. Kubrak, I. Torous, T. Nazarchuk, K. Storey, V. Lushchak, Trivalent chromium induces oxidative stress in goldfish brain, Chemosphere, vol. 75, p.56–62, (2009).

DOI: 10.1016/j.chemosphere.2008.11.052

Google Scholar

[4] P. Subashini, R. Manavalaramanujam, M. Ramesh, N. Geetha, Changes in selected biomarkers in freshwater teleost fish, Cyprinus carpio var. communis exposed to sublethal concentrations of chromium sulphate toxicity, J. Environ. Sci. Eng, vol. 47, p.65–68, (2005).

Google Scholar

[5] Y. Takabe, H. Tsuno, F. Nishimura, Y. Guan, T. Mizuno, Matsumura C, et al., Applicability of Corbicula as a bioindicator for monitoring organochlorine pesticides in fresh and brackish waters, Environ. Monit. Assess, DOI 10. 1007/s10661-010-1718-7, (2010).

DOI: 10.1007/s10661-010-1718-7

Google Scholar

[6] R. McMahon, Mollusca: Bivalvia. In: Thorp JH, Covich AP (eds) Ecology and classi®cation of North American fresh-water invertebrates. Academic Press/Hartcourt Brace Jovanovich, San Diego, p.315±401, (1991).

Google Scholar

[7] H. Tatem, Bioaccumulation of Polychlorinated Biphenyls and Metals from Contaminated Sediment by Freshwater Prawns, Macrobrachium rosenbergii and Clams Corbicula fluminea. Arch. Environ, Contain. Toxicol., vol. 15, 171-183, (1986).

DOI: 10.1007/bf01059966

Google Scholar

[8] L. Zeng, G. CHEN, H. WU, Toxicity Effects of Cd and Cu on the Respiration and Excretion Metabolism of Asian Clam. J. Agro—Envimn. Sci., vol. 26, no. 1, pp.175-178. (2007).

Google Scholar

[9] A. Legeay, M. Achard-Joris, M. Baudrimont, J. Massabuau, J. Bourdineaud, Impact of cadmium contamination and oxygenation levels on biochemical responses in the Asiatic clam Corbicula fluminea, Aqua. Toxicol., vol. 74, p.242–253, (2005).

DOI: 10.1016/j.aquatox.2005.05.015

Google Scholar

[10] D. Hodges, J. DeLong, C. Forney, R. Prange, Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds, Planta vol. 207, 604–611, (1999).

DOI: 10.1007/s004250050524

Google Scholar

[11] R. Greenwald, 1985. Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, FL.

Google Scholar

[12] V. Lushchak, Environmentally induced oxidative stress in aquatic animals, Aquat. Toxicol., doi: 10. 1016/j. aquatox. 2010. 10. 006, (2010).

Google Scholar

[13] J. Wetterhahn, Chromate metabolism in liver microsomes, Biol. Trace Elem. Res., vol. 1, p.55–62, (1979).

DOI: 10.1007/bf02783843

Google Scholar

[14] C. Wang, S. Zhang, P. Wang, J. Qian, J. Hou, W. Zhang, J. Lu, Excess Zn alters the nutrient uptake and induces the antioxidative responses in submerged plant Hydrilla verticillata (L. f. ) Royle. Chemosphere, vol. 76, p.938–945, (2009).

DOI: 10.1016/j.chemosphere.2009.04.038

Google Scholar

[15] E. Rudolfa, M. Cervinkaa, J. Cerman, Zinc has ambiguous effects on chromium (VI)-induced oxidative stress and apoptosis, J. Trace Elements in Medicine Biol, vol. 18, 251–260, (2005).

DOI: 10.1016/j.jtemb.2004.09.004

Google Scholar

[16] J. Corrêa, M. da Silva, A. da Silva, S. de Lima, O. Malm, S. Allodi, Tissue distribution, subcellular localization and endocrine disruption patterns induced by Cr and Mn in the crab Ucides cordatus, Aqua. Toxicol., vol. 73, 139–154, (2005).

DOI: 10.1016/j.aquatox.2005.03.005

Google Scholar

[17] T. Marina, J. Maria Polo, S. Llesuy. Chromium(VI) induces oxidative stress in the mouse brain. Toxicology, vol. 150, p.137–146, (2000).

DOI: 10.1016/s0300-483x(00)00254-7

Google Scholar

[18] J. Perez-Benito, Effects of chromium (VI) and vanadium (V) on the lifespan of fish, J. Trace Elem. Med. Biol., vol. 20, p.161–170, (2006).

DOI: 10.1016/j.jtemb.2006.04.001

Google Scholar

[19] J. Wetterhahn, 1979. Chromate metabolism in liver microsomes. Biol. Trace Elem. Res., vol. 1, p.55–62.

DOI: 10.1007/bf02783843

Google Scholar