Computational Fracture Modelling in Bioceramic Structures

Article Preview

Abstract:

Bioceramics have rapidly emerged as one of major biomaterials in modern biomedical applications because of its outstanding biocompatibility. However, one drawback is its low tensile strength and fracture toughness due to brittleness and inherent microstructural defects, which to a certain extent prevents the ceramics from fully replacing metals used as load-bearing prostheses. This paper aims to model the crack initiation and propagation in ceramic fixed partial denture, namely dental bridge, by using two recently developed methods namely continuum-to-discrete element method (CDEM) in ELFEN and extended finite element methods (XFEM) in ABAQUS. Unlike most existing studies that typically required prescriptions of initial cracks, these two new approaches will model crack initiation and propagation automatically. They are applied to a typical prosthodontic example, thereby demonstrating their applicability and effectiveness in biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

853-856

Citation:

Online since:

July 2011

Export:

Price:

[1] I. Ichim, Q. Li, W. Li, J. Kieser, M.V. Swain: Biomaterials Vol. 28(2007), pp.1317-1326.

DOI: 10.1016/j.biomaterials.2006.10.035

Google Scholar

[2] Q. Li, I. Ichim, J. Loughran, W. Li, M.V. Swain, J. Kieser: Key Eng. Mater. Vol. 312 (2006), pp.293-298.

DOI: 10.4028/www.scientific.net/kem.312.293

Google Scholar

[3] J.R. Kelly, J.A. Tesk and J.A. Sorensen: J. Dent. Res. Vol. 7 (1995), P. 1253.

Google Scholar

[4] W. Oh, N. Gotzen and K.J. Anusavice: J. Prosthet. Dent. Vol. 87 (2002), p.536.

Google Scholar

[5] E.D. Rekow and V.P. Thompson: Key Eng. Mat. Vol. 198 (2001), p.115.

Google Scholar

[6] H. Fischer, G. Dautzenberg and R. Marx: Dent. Mater. Vol. 17 (2001), p.289.

Google Scholar

[7] U. Lohbauer, A. Petschelt and P. Greil: J. Biomed. Mater. Res. Vol. 63 (2002), p.780.

Google Scholar

[8] P. Pospiech, P. Rammelsberg, G. Goldhofer and W. Gernet: Eur. J. Oral. Sci. Vol. 104 (1996), p.390.

DOI: 10.1111/j.1600-0722.1996.tb00097.x

Google Scholar

[9] B.R. Lang, R.F. Wang and M. Vasilic: J. Dent. Res. Vol. 81 (2002), p.1829.

Google Scholar

[10] W. Li, M.V. Swain, Q. Li and G.P. Steven. Biomaterials Vol. 25 (2004), pp.4897-4993.

Google Scholar

[11] W. Li, M.V. Swain, Q. Li and G.P. Steven. Biomaterials Vol. 25 (2004), pp.4995-5001.

Google Scholar

[12] P. Klerck, E. Sellers and D.R.J. Owen: Comput. Methods in Appl. Mech. Engrg. Vol. 139 (2004), pp.3035-3056.

Google Scholar

[13] I. Ichim, Q. Li, J.G. Loughran, J. Kieser, M.V. Swain: Dent. Mater. Vol. 23 (2007), pp.1562-1569.

Google Scholar

[14] I. Ichim, P.R. Schmidlin, Q. Li, M.V. Swain, J. Kieser: Dent. Mater. Vol. 23 (2007), pp.1553-1561.

Google Scholar