Influence of the Catalyst Supporting Material on the Growth of Carbon Nanotubes

Article Preview

Abstract:

Catalytic chemical vapor deposition (CCVD) is considered as the most suitable technique for the large scale and low-cost production of carbon nanotubes (CNTs). Catalytic activity of Fe-Co, Fe-Ni and Co-Ni mixture supported on Al2O3 has been investigated in the production of carbon nanotubes (CNTs). Absolute ethanol was used as a source of carbon and nitrogen as the carrier gas. The Carbon nanotubes prepared by the catalytic decomposition of ethanol at 1173°K over iron supported alumina or silica catalysts with 5Wt% iron loading in a horizontal tube furnace under flow of nitrogen. The morphological structure of deposits CNTs were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the alumina supported catalysts more active towards CNTs formation than silica supported catalysts even with changing the percentage of metal loading (2.5% - 10%). Further investigation for alumina support with other metals and their binary metals heve been done to see for how far the alumina is suitable as a support. The yield of the carbon deposit obtained varied from 11.2 to 34.9% of the initial weight of the catalyst. The results revealed that CNTs prepared by Fe-Ni/Al2O3 catalyst has high length/diameter ratio and small tube diameter ≈ 17 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-127

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] J. Pitroda, B. Jethwa, S.K. Dave, A Critical Review on Carbon Nanotubes. International Journal of Constructive Research in Civil Engineering (IJCRCE). 2(5), (2016) 36-42.

Google Scholar

[2] T. Bensattalah, K. Bouakkaz, M. Zidour, T. H. DaouadjiBottom of Form, Critical buckling loads of carbon nanotube embedded in Kerr's medium. Advances in nano research. 6(4) (2018) 339-356.

Google Scholar

[3] S. Belmahi, M. Zidour, M. Meradjah ,T. Bensattalah,  A. Dihaj,  Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix. Structural Engineering and Mechanics. 67(5) (2018) 517-525.

Google Scholar

[4] T. bensattalah, A. hamidi, k. bouakkaz, M. zidour, T. H. daouadji, Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory. In Journal of Nano Research. 62 (2020) 108-119.

DOI: 10.4028/www.scientific.net/jnanor.62.108

Google Scholar

[5] M. Bouazza, K. Amara, M. Zidour, T. Abedlouahed, A. B. El Abbas, Thermal effect on buckling of multiwalled carbon nanotubes using different gradient elasticity theories. Nanoscience and Nanotechnology. 4(2) (2014) 27-33.

DOI: 10.1016/j.egypro.2014.06.078

Google Scholar

[6] T. Si Tayeb, M. Zidour, T. Bensattalah, H. Heireche, A.Benahmed, E.A. A. Bedia, Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle. Advances in nano research. 8(2) (2020) 135-148.

Google Scholar

[7] T. Bensattalah, M. Zidour, T. H. Daouadji, Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory. Advances in Materials Research. 7(3) (2018) 163-174.

Google Scholar

[8] K. Rakrak, M. Zidour, H. Heireche, A. A. Bousahla, A. Chemi, Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory. Structural engineering and mechanics, Advances in Nano Research. 4(1) (2016) 31-44.

DOI: 10.12989/anr.2016.4.1.031

Google Scholar

[9] A. Dihaj, M. Zidour, M. Meradjah, K. Rakrak, H. Heireche, A. Chemi, Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model. Structural engineering and mechanics. 65 (2018) 335-342.

DOI: 10.12989/anr.2016.4.1.031

Google Scholar

[10] A. Boulal, T. Bensattalah, A. Karas, M. Zidour, H. Heireche, E.A. A. Bedia, Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle. Structural Engineering and Mechanics. 73(2) (2020) 209-223.

Google Scholar

[11] A. Chemi, M. Zidour, H. Heireche, K. Rakrak, A. A. Bousahla, Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium. Mechanics of Composite Materials. 53(6) (2018) 827-836.

DOI: 10.1007/s11029-018-9708-x

Google Scholar

[12] Y. Gafour, A. Hamidi, A. Benahmed, M. Zidour, T. Bensattalah, Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle. Advances in nano research. 8(1) (2020) 37-47.

Google Scholar

[13] H. Ahmed, Z. Mohamed, B. Tayeb, B. Khaled, Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes. Journal of Nano Research. 51 (2018) 24-38.

DOI: 10.4028/www.scientific.net/jnanor.51.24

Google Scholar

[14] T. Bensattalah, M. Zidour, T. H. Daouadji , K. Bouakaz, Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix. Structural Engineering and Mechanics. 70(3) (2019). 269-277.

DOI: 10.1007/s11029-016-9606-z

Google Scholar

[15] G. Rahman, Z. Najaf, A. Mehmood,  S. Bilal, A. ul H. A. Shah , S. A. Mian , G. Ali, An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C-Journal of Carbon Research. 5(3) (2019)  1-31.

DOI: 10.3390/c5010003

Google Scholar

[16] G. Chen, D. N. Futaba, K. Hata, Catalysts for the growth of carbon nanotube forests, and superaligned arrays.  MRS Bulletin. 42(11) (2017) 802-808.

DOI: 10.1557/mrs.2017.235

Google Scholar

[17] S.R. Kirumukki, N. Nagaraju, K.V.V.S.B.S.R. Murthy, S. Narayanan, Esterification of salicylic acid over zeolites using dimethyl carbonate. Applied Catalysis. A. 226 (2002) 175-182.

DOI: 10.1016/s0926-860x(01)00900-0

Google Scholar

[18] I. Willems, Z. Konya, J. -F. Colomer, G. T. Van, N. Nagaraju, A. Fonseca, J. B. Nagy, Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters. 317(1-2) (2000) 71-76.

DOI: 10.1016/s0009-2614(99)01300-7

Google Scholar

[19] C. Siang-Piao, H. S. Z Sharif, M. Abdul Rahman, Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane. Chemical Physics Letters. 426(4-6) (2006) 345-350.

DOI: 10.1016/j.cplett.2006.05.026

Google Scholar

[20] R. Wang, H. Xu, Y. Chen, W. Li, The Effect of Supports on the Activity of Methane Dissociation over Rh Catalysts. Chinese J. Catalysis. 28(4) (2007) 293-295.

DOI: 10.1016/s1872-2067(07)60026-6

Google Scholar

[21] C. T. Hsieh, J. M. Chen, R. R. Kuo, Y.H. Huang, Fabrication of well-aligned carbon nanofiber array and its gaseous-phase adsorption behavior Applied. Physics Letters. 84 (2004) 1186-1188.

DOI: 10.1063/1.1646746

Google Scholar

[22] J. M. Ting, and N. Z. Huang, Thickening of chemical vapor deposited carbon fiber. Carbon. 39 (2001) 835-839.

DOI: 10.1016/s0008-6223(00)00194-9

Google Scholar

[23] T. W. Ebbesen, P. M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature. 358 (1992) 220-222.

DOI: 10.1038/358220a0

Google Scholar

[24] M. Marijana, T. L. A. Duncan, F. László, M. Arnaud, Influence of the catalyst drying process and catalyst support particle size on the carbon nanotubes produced by CCVD. Physica. status. solidi. (b) 245 (2008) 1915-1918.

DOI: 10.1002/pssb.200879614

Google Scholar

[25] A.R. Biris, A.S. Biris, D. Lupu, S. Trigwell, E. Dervishi, Z. Rahman, P. Marginean. Catalyst excitation by radio frequency for improved carbon nanotubes synthesis. Chemical. Physics. Letters. 429 (2006) 204-208.

DOI: 10.1016/j.cplett.2006.08.007

Google Scholar

[26] A. G. Nasibulin, S. D. Shandakov, P. R. Mudimela, E. I. Kauppinen, Morphology and structure of carbon nanotubes synthesized on iron catalyst in the presence of carbon mono oxide. Nanotechnologies in Russia. 5 (2010) 198–208.

DOI: 10.1134/s1995078010030079

Google Scholar

[27] B. Li, X. Wang, H. Y. Jung, Y. L. Kim, J. T. Robinson, M. Zalalutdinov, S. Hong, J. Hao, P.M. Ajayan, K.-T. Wan, Y. J. Jung, Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface. Scientific reports. 5(1) (2015) 1-9.

DOI: 10.1038/srep15908

Google Scholar

[28] K.-Y. Lee, W.-M. Yeoh, S.-P. Chai, A. R. Mohamed, Utilization of compressed natural gas for the production of carbon nanotubes. Journal of Natural Gas Chemistry. 21(6) (2012) 620–624.

DOI: 10.1016/s1003-9953(11)60410-6

Google Scholar

[29] S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chemical Society Reviews. 46(1) (2017) 158–196.

DOI: 10.1039/c6cs00517a

Google Scholar

[30] S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical Physics Letters. 350(1-2) (2001) 19-26.

DOI: 10.1016/s0009-2614(01)01183-6

Google Scholar

[31] W. Han, H. Chu, Y. Ya, S. Dong, C. Zhang, Effect of fuel structure on synthesis of carbon nanotubes in diffusion flames. Fullerenes, Nanotubes and Carbon Nanostructures. 27(3) (2019) 1–11.

DOI: 10.1080/1536383x.2019.1567500

Google Scholar

[32] A. El-Maghraby, H. El-Deeb, M. Khattab, Influence of FeNi/Al2O3 Catalyst Compositions on the Growth of Carbon Nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures. 23(1) (2014) 27-34.

DOI: 10.1080/1536383x.2012.702159

Google Scholar

[33] N. Ikram, M. Akhtar, X-ray diffraction analysis of silicon prepared from rice husk ash. Journal of Material Science and Technology. 23(7) (1988) 2379-2381.

DOI: 10.1007/bf01111891

Google Scholar

[34] B. Zhao, Y. Wang, H. Guo, J. Wang, Y. HE, Z. Jiao, M. Wu, Iron oxide (III) nanoparticles fabricated by electron beam irradiation method. Materials Science-Poland. 25(4) (2007) 1143-1148.

Google Scholar

[35] H. Kathyayini, I. Willems, A. Fonseca, J.B. Nagy, N. Nagaraju, Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes. Catalysis Communications. 7(3) (2006) 140-147.

DOI: 10.1016/j.catcom.2005.05.010

Google Scholar

[36] Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H. B. Yang, B. Liu, Y. Yang, Carbon Nanotube Catalysts: Recent Advances in Synthesis. Characterization and Applications. Chemical Society Reviews, 44(10) (2015)  3295–3346.

DOI: 10.1039/c4cs00492b

Google Scholar

[37] C. Branca, F. Frusteri, V. Magazù, A. Mangione, Characterization of Carbon Nanotubes by TEM and Infrared Spectroscopy. The Journal of Physical Chemistry B. 108(11) (2004) 3469–3473.

DOI: 10.1021/jp0372183

Google Scholar