Boron Compounds Counteracts Oxidative Stress Mediated Genotoxicity Induced by Fe3O4 Nanoparticles In Vitro

Article Preview

Abstract:

Due to rapid growing of nanotechnology, it is currently being used in many areas including biotechnology, electronics, drug delivery systems, cosmetics, material science and biosensors. Oxidative stress is considered as main cause behind the toxicity of nanoparticles (NPs). Recent reports indicate that boron is effective in protecting cells or organisms against oxidative damages by enhancing antioxidant defense mechanisms. However, protective role of boron compounds in nanotoxicity is not investigated yet. Therefore we assessed the potential protective role of boric acid (BA) and borax (BX) against the toxic responses of nano-Fe3O4 particles (IO NPs) in cultured human whole blood cells. Our results showed that IO NPs induced genotoxicity in human lymphocytes demonstrated by sister chromatid exchange (SCE) and 8-hydroxy-2′-deoxyguanosine (8-OH-dG) assays. Again, IO NPs caused decreases of total antioxidant capacity (TAC) and decreases of total oxidative stress (TOS) levels in vitro. Co-application of boric acid and borax (2.5 to 10 ppm) into the cell cultures significantly ameliorated genotoxicity and oxidative stress caused by IO NPs. In a conclusion, this study is the first report revealing that BA and BX significantly protected human blood cells from the toxicity of IO NPs, which is mediated through the generation of oxidative stress and depletion of antioxidant capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-90

Citation:

Online since:

May 2016

Export:

Price:

* - Corresponding Author

[1] S. Laurent, D. Forge, M. Port, A. Roch, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110.

DOI: 10.1021/cr068445e

Google Scholar

[2] M. Azhdarzadeh, A.A. Saei, S. Sharifi, M.J. Hajipour, Nanotoxicology: advances and pitfalls in research methodology, Nanomed. (Lond). 10 (2015) 2931-2952.

DOI: 10.2217/nnm.15.130

Google Scholar

[3] L. Lei, J. Ling-Ling, Z. Yun, L. Gang, Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine, Chin. Phys. B. 22 (2013) 127503.

DOI: 10.1088/1674-1056/22/12/127503

Google Scholar

[4] A.R. Murray, E. Kisin, A. Inman, Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro, Cell Biochem. Biophys. 67 (2013) 461-476.

DOI: 10.1007/s12013-012-9367-9

Google Scholar

[5] U. Gaharwar, R. Paulraj, Iron oxide nanoparticles induced oxidative damage in peripheral blood cells of rat, J. Biomed. Sci. Engineer. 8 (2015) 274-286.

DOI: 10.4236/jbise.2015.84026

Google Scholar

[6] T.R. Pisanic, J.D. Blackwell, V.I. Shubayev, R.R. Finones, S. Jin, Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomater. 28 (2007) 2572-2581.

DOI: 10.1016/j.biomaterials.2007.01.043

Google Scholar

[7] C.D. Hunt, J.P. Idso, Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress, J. Trace Elem. Exp. Med. 12 (1999) 221-233.

DOI: 10.1002/(sici)1520-670x(1999)12:3<221::aid-jtra6>3.0.co;2-x

Google Scholar

[8] S. Pawa, S. Ali, Boron ameliorates fulminant hepatic failure by counteracting the changes associated with oxidative stress, Chem. Biol. Interact. 160 (2006) 89-98.

DOI: 10.1016/j.cbi.2005.12.002

Google Scholar

[9] F. Geyikoglu, H. Turkez, Acute toxicity of boric acid on energy metabolism of the breast muscle in broiler chickens, Biologia. 62 (2007) 112-117.

DOI: 10.2478/s11756-007-0018-3

Google Scholar

[10] H. Turkez, F. Geyikoglu, A. Tatar, S. Keles, A. Ozkan, Effects of some boron compounds on peripheral human blood, Z Naturforsch (C) 62 (2007) 889-896.

Google Scholar

[11] H. Turkez H Effects of boric acid and borax on titanium dioxide genotoxicity, J. Appl. Toxicol. 28 (2008) 658-664.

DOI: 10.1002/jat.1318

Google Scholar

[12] H. Turkez, A. Tatar, A. Hacimuftuoglu, E. Ozdemir, Boric acid as a protector against paclitaxel genotoxicity, Acta Biochim. Pol. 57 (2010) 95-97.

DOI: 10.18388/abp.2010_2378

Google Scholar

[13] H. Turkez, F. Geyikoglu, E. Dirican, A. Tatar, In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes, Cytotechnol. 64 (2012) 607-612.

DOI: 10.1007/s10616-012-9454-1

Google Scholar

[14] H. Turkez, T. Sisman, Anti-genotoxic effect of hydrated sodium calcium aluminosilicate on genotoxicity to human lymphocytes induced by aflatoxin B1, Toxicol. Ind. Health. 23 (2007) 83-89.

DOI: 10.1177/0748233707076738

Google Scholar

[15] E. Aydın, H. Turkez, M.S. Keleş, The effect of carvacrol on healthy neurons and N2a cancer cells: some biochemical, anticancerogenicity and genotoxicity studies, Cytotechnol. 66 (2014) 149-157.

DOI: 10.1007/s10616-013-9547-5

Google Scholar

[16] H.J. Evans, M.L. O'Riordan, Human peripheral blood lymphocytes for analysis of chromosome aberrations in mutagen tests, Mutat. Res. 31 (1975) 135-148.

DOI: 10.1016/0165-1161(75)90082-5

Google Scholar

[17] F. Geyikoglu, H. Turkez, Boron compounds reduce vanadium tetraoxide genotoxicity in lymphocytes, Environ. Toxicol. Pharmacol. 26 (2008) 342-347.

DOI: 10.1016/j.etap.2008.07.002

Google Scholar

[18] M. Ahamed, H.A. Alhadlaq, J. Alam, M.A. Khan, D. Ali, S. Alarafi, Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines, Curr. Pharm. Des. 19 (2013) 6681-6690.

DOI: 10.2174/1381612811319370011

Google Scholar

[19] Z. Caldıran, A.R. Deniz, Y. Sahin, Ö. Metin, K. Meral, A. Sakir, The electrical of the Fe3O4/Si junction, J. Alloys Comp. 552 (2013) 437-442.

DOI: 10.1016/j.jallcom.2012.11.079

Google Scholar

[20] Z. Xu, C. Shen, Y. Hou, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles, Chem. Mater. 21 (2009) 1778-1780.

DOI: 10.1021/cm802978z

Google Scholar

[21] D.E. Rooney, B.H. Czepulkowski, Human Cytogenetics: A Practical Approach, IRL Press, Oxford, (1986).

Google Scholar

[22] H. Turkez, E. Dirican, A modulator against mercury chloride-induced genotoxic damage: Dermatocarpon intestiniforme (L. ), Toxicol. Ind. Health. 28 (2012) 58-63.

DOI: 10.1177/0748233711404036

Google Scholar

[23] F. Geyikoglu, H. Turkez, M.S. Keles, The role of fruit juices in the prevention of aluminum sulphate toxicity in vitro, Fresen. Environ. Bull. 14 (2005) 878-883.

Google Scholar

[24] F. Geyikoglu, H. Turkez, Protective effects of sodium seleniteon genotoxicity to human whole blood in vitro, Brazil. Arch. Biol. Technol. 48 (2005) 905-910.

DOI: 10.1590/s1516-89132005000800006

Google Scholar

[25] R.A. Floyd, J.J. Watson, P.K. Wong, Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation, Free Radic. Res. Commun. 1 (1993) 163-172.

DOI: 10.3109/10715768609083148

Google Scholar

[26] H. Turkez, F. Geyikoglu, M.I. Yousef, Ameliorative effect of docosahexaenoic acid on 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced histological changes, oxidative stress, DNA damage in rat liver, Toxicol. Ind. Health, 28 (2012) 687-696.

DOI: 10.1177/0748233711420475

Google Scholar

[27] H. Turkez, E. Aydin, A. Aslan, Xanthoria elegans (Link) (lichen) extract counteracts DNA damage and oxidative stress of mitomycin C in human lymphocytes, Cytotechnol. 64 (2012) 679-686.

DOI: 10.1007/s10616-012-9447-0

Google Scholar

[28] M. Kawanishi, S. Ogo, M. Ikemoto, Y. Totsuka, K. Ishino, K. Wakabayashi, T. Yagi, Genotoxicity and reactive oxygen species production induced by magnetite nanoparticles in mammalian cells, J. Toxicol. Sci. 38 (2013) 503-511.

DOI: 10.2131/jts.38.503

Google Scholar

[29] M. Könczöl, S. Ebeling, E. Goldenberg, F. Treude, R. Gminski, Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB. Chem. Res. Toxicol. 24 (2011) 1460-1475.

DOI: 10.1021/tx200051s

Google Scholar

[30] S. Rajiv, J. Jerobin, V. Saranya, M. Nainawat, A. Sharma, Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro, Hum. Exp. Toxicol. (in press) (2015).

DOI: 10.1177/0960327115579208

Google Scholar

[31] Y. Liu, Q. Xia, Y. Liu, S. Zhang, F. Cheng, Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings, Nanotechnol. 25 (2014) 425101.

DOI: 10.1088/0957-4484/25/42/425101

Google Scholar

[32] D. Couto, R. Sousa, L. Andrade, M. Leander, Polyacrylic acid coated and non-coated iron oxide nanoparticles are not genotoxic to human T lymphocytes, Toxicol. Lett. 234 (2015) 67-73.

DOI: 10.1016/j.toxlet.2015.02.010

Google Scholar

[33] R. Sadiq, Q.M. Khan, A. Mobeen, A.J. Hashmat, In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug Chem. Toxicol. 38 (2015) 152-161.

DOI: 10.3109/01480545.2014.919584

Google Scholar

[34] F.C. Celikezen, H. Turkez, B. Togar, M.S. Izgi, DNA damaging and biochemical effects of potassium tetraborate, Excli J. 13 (2014) 446-450.

Google Scholar

[35] S. Ince, I. Kucukkurt, H.H. Demirel, D.A. Acaroz, Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats, Chemosphere. 108 (2014) 197-204.

DOI: 10.1016/j.chemosphere.2014.01.038

Google Scholar

[36] I. Kucukkurt, S. Ince, H.H. Demirel, R. Turkmen, E. Akbel, Y. Celik, The effects of boron on arsenic-induced lipid peroxidation and antioxidant status in male and female rats. J. Biochem. Mol. Toxicol. (in press) (2015) doi. 10. 1002/jbt. 21729.

DOI: 10.1002/jbt.21729

Google Scholar

[37] H. Turkez, F. Geyikoglu, A. Tatar, Borax counteracts genotoxicity of aluminum in rat liver, Toxicol. Ind. Health. 29 (2013) 775-779.

DOI: 10.1177/0748233712442739

Google Scholar

[38] S. Ince, I. Kucukkurt, I.H. Cigerci, F. Fidan, A. Eryavuz, The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats, J. Trace Elem. Med. Biol. 24 (2010) 161-164.

DOI: 10.1016/j.jtemb.2010.01.003

Google Scholar