Uncertainty Scaling – Motivation, Method and Example Application to Aload Carrying Structure

Article Preview

Abstract:

Scaling methods allow the estimation of the impact of changes in individual parameters on system performance. In the technical context, physical similarity is the focus. This paper demonstrates the extension of scaling methods to include uncertainty scaling. The advantages of using scaling uncertainty for the development of scaled products and the contribution of extended scaling methods to the analysis and assessment of uncertainty are illustrated. Uncertainty scaling based on dimensional analysis and complete similarity is derived. The potential of this method is demonstrated using a load carrying structure - a buckling beam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-108

Citation:

Online since:

November 2015

Export:

Price:

* - Corresponding Author

[1] G. Pahl, W. Beitz, J. Feldhusen, K.H. Grote, Pahl Engineering Design. A Systematic Approach, third ed., Springer-Verlag, London, (2007).

DOI: 10.1007/978-1-84628-319-2

Google Scholar

[2] T.J. Simpson, J.R.A. Maier, F. Mistree, Product platform design: method and application, Research in Engineering Design , Vol. 13 (2001), pp.2-22.

DOI: 10.1007/s001630100002

Google Scholar

[3] J. Lotz, H. Kloberdanz, T. Freund, K. Rath, Estimating Uncertainty of Scaled Products Using Similarity Relations and Laws of Growth, Design Conference 2014, 19. -22. 05. 2014, Dubrovnik. Proceedings of the 13th International Design Conference DESIGN 2014 Dubrovnik.

Google Scholar

[4] J. Lotz, H. Kloberdanz, in T.J. Howard, T. Eifler (eds. ), Scaling under Dynamic Uncertainty using Laws of Growth, Proceedings of the International Symposium on Robust Design – IsoRD14, Copenhagen (2014), pp.17-27.

Google Scholar

[5] P.W. Bridgman, Dimensional Analysis, Yale University Press, New Haven, (1922).

Google Scholar

[6] G.I. Taylor, The formation of a blast wave by a very-intense explosion, Proceedings of the Royal Society, London, Vol. A201 (1950), p.175–186.

Google Scholar

[7] J. von Neumann, The point source solution, NDRC Division B Rept AM-9, 1941, Reprinted in Taub AH (ed) John von Neumann collected works, Pergamon, Oxford, (1963), pp.219-237.

Google Scholar

[8] L.I. Sedov , The movement of air in a strong explosion, Journal of Applied Mathematics and Mechanics, Vol. 10 (1946), p.241 – 250.

Google Scholar

[9] L.I. Sedov, Similarity and dimensional methods in mechanics, Academic Press: New York, (1959), Chap. 4.

Google Scholar

[10] P.F. Pelz, S. Karstadt, Tip Clearance Losses – A Physical Based Scaling Method, In: International Journal of Fluid Machinery and Systems, Vol. 3 (2010), pp.279-84.

DOI: 10.5293/ijfms.2010.3.4.279

Google Scholar

[11] P.F. Pelz, S. Stonjek, A Second Order Exact Scaling Method for Turbomachinery Performance Prediction, In: International Journal of Fluid Machinery and Systems (2013).

DOI: 10.5293/ijfms.2013.6.4.177

Google Scholar

[12] P.F. Pelz, A. Vergé, Validated biomechanical model for efficiency and speed of rowing, Journal of Biomechanics, Vol. 47 (2014), pp.3415-3422.

DOI: 10.1016/j.jbiomech.2014.06.037

Google Scholar

[13] H. Hanselka, R. Platz, Ansätze und Maßnahmen zur Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus, Konstruktion, November/December (2010), pp.55-62.

Google Scholar

[14] A. Bretz, S. Calmano, T. Gally, B. Götz, R. Platz, J. Würtenberger, Darstellung passiver, semi-aktiver und aktiver Maßnahmen im SFB 805-Prozessmodell, Preprint 2015, SFB 805, TU Darmstadt.

Google Scholar

[15] P.F. Pelz, P. Hedrich, Unsicherheitsklassifizierung anhand einer Unsicherheitskarte, technical Report of Instituts for Fluid Systems, Darmstadt, (2015).

Google Scholar

[16] J.H. Spurk, Dimensionsanalyse in der Strömungslehre, Springer Verlag, Berlin Heidelberg, (1992).

Google Scholar

[17] Deutsches Institut für Normung, DIN ISO 286.

Google Scholar

[18] W. Steinhilper, B. Sauer, Konstruktionselemente des Maschinenbaus 1, Springer-Lehrbuch, Springer Verlag, Berlin Heidelberg, (2012).

DOI: 10.1007/b137576

Google Scholar