Raman Analysis of Vanadyl Phthalocynine Layers for Plastic Electronic Applications

Article Preview

Abstract:

Engineering, stability and orientation of semiconducting molecules are necessary to achieve the high efficiency of multifunctional organic-based devices. Several conjugated molecules facilitate the use of external magnetic fields to tailor both their molecular orientation and electronic properties while being processed for bio or opto-electronic applications. In this work, molecular thin films of vanadyl phthalocynine (VOPc) layers forming conducting channels in organic field-effect transistors were investigated. Three systems based on 100 nm thick VOPc thin film were grown, one in absence of magnetic field, while the other two with parallel and perpendicular to the substrate plane, respectively. Devices were ex-situ investigated by electrical characterization and confocal scanning Raman spectroscopy (SRS). All molecular layers growth on Au electrodes presented enhancement of the Raman signal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-175

Citation:

Online since:

September 2015

Export:

Price:

* - Corresponding Author

[1] D.M. DeLongchamp, R.J. Kline, D.A. Fischer, L.J. Richter, M.F. Toney, Molecular Characterization of Organic Electronic Films, Adv. Mater., 23 (2011) 319–337.

DOI: 10.1002/adma.201001760

Google Scholar

[2] M. O'Neill, and S. M. Kelly, Ordered Materials for Organic Electronics and Photonics Adv. Mater., 23 (2011) 566–584.

Google Scholar

[3] Kamal, I. Katsouras, J. Harkema, F. Gholamrezaie, E.C.P. Smits, F. Biscarini, P.W.M. Blom, D. M. de Leeuw, Organic field-effect transistors as a test-bed for molecular electronics: A combined study with large-area molecular junctions, Organic Electronics 13 (2012).

DOI: 10.1016/j.orgel.2012.07.012

Google Scholar

[4] J. Kawahara, P. Andersson Ersman, X. Wang, G. Gustafsson, H. Granberg, M. Berggren, Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials, Organic Electronics 14 (2013).

DOI: 10.1016/j.orgel.2013.07.013

Google Scholar

[5] Pabst, J. Perelaer, E. Beckert, U.S. Schubert, R. Eberhardt, A. Tünnermann, All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems, Organic Electronics 14 (2013) 3423-3429.

DOI: 10.1016/j.orgel.2013.09.009

Google Scholar

[6] T. Someya, A. Dodabalapur, A. Gelperin, H.E. Katz, Z. Bao, Integration and Response of Organic Electronics with Aqueous Microfluidics, Langmuir 18 (2002) 5299-5302.

DOI: 10.1021/la020026z

Google Scholar

[7] L. Torsi, Special Issue on Organic Electronic Bio-Devices, Biosensors 3, (2013) 116-119.

DOI: 10.3390/bios3010116

Google Scholar

[8] J. -B. Kim, J. -H. Lee, C. -K. Moon, S. -Y. Kim, J. -J. Kim, Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Light-Emitting Diodes, Adv. Mater., 25 (2013) 3571–3577.

DOI: 10.1002/adma.201205233

Google Scholar

[9] D. Elkington, N. Cooling, W. Belcher, P.C. Dastoor, X. Zhou, Organic Thin-Film Transistor (OTFT)-Based Sensors, Electronics 3 (2014) 234-254.

DOI: 10.3390/electronics3020234

Google Scholar

[10] U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, H. Klauk.

DOI: 10.1002/adma.201003374

Google Scholar

[11] Organic electronics on banknotes, Advanced Materials 23(5) (2011) 654-658.

Google Scholar

[12] Q. Gan, F.J. Bartoli, Z.H. Kafafi, Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier, Adv. Mater., 25 (2013) 2385–2396.

DOI: 10.1002/adma.201203323

Google Scholar

[13] T. Ameri, N. Lia, C.J. Brabec, Highly efficient organic tandem solar cells: a follow up review, Energy Environ. Sci. 6 (2013) 2390-2413.

DOI: 10.1039/c3ee40388b

Google Scholar

[14] F.J. Bartoli and Z.H. Kafafi, Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier, Adv. Mater., 25 (2013) 2385–2396.

DOI: 10.1002/adma.201203323

Google Scholar

[15] B.A. Paez, H. Rodríguez, H., Electrónica plástica molecular fotolitografía y procesamiento de diodos orgánicos emisores de luz (OLEDs), Nano Ciencia y tecnología 1 (2013) 13-23.

Google Scholar

[16] F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G. -W. Hsieh, S. Jung, F. Bonaccorso, Ph.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics, ACS Nano 6 (2012) 2992-3006.

DOI: 10.1021/nn2044609

Google Scholar

[17] Kumar, D. Moet, J. -L. van der Steen, A. Tripathi, F. Gonzalez Rodriguez, J. Maas, M. Simon, W. Reutten, A. Douglas, R. Raaijmakers, P.E. Malinowski, K. Myny, U. Shafique, R. Andriessen, P. Heremans, G. Gelinck, X-ray imaging sensor arrays on foil using solution processed organic photodiodes and organic transistors, Proc. SPIE 9137 (2014).

DOI: 10.1117/12.2051224

Google Scholar

[18] G.H. Gelinck, A. Kumar, D. Moet, J. -L. van der Steen, U. Shafique, P.E. Malinowski, K. Myny, B.P. Rand, M. Simon, W. Rütten, A. Douglas, J. Jorritsma, P. Heremans, R. Andriessen, X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate, Organic Electronics 14 (2013).

DOI: 10.1016/j.orgel.2013.06.020

Google Scholar

[19] S. Liu, Q. Li, Using organic slab to obtain x-ray tube spectra for quantitative analysis of x-ray fluorescence analysis, Proc. SPIE 8848, (2013).

DOI: 10.1117/12.2022615

Google Scholar

[20] Fraboni, A. Ciavatti, F. Merlo, L. Pasquini, A. Cavallini, A. Quaranta, A. Bonfiglio, and A. Fraleoni-Morgera, Organic Semiconducting Single Crystals as Next Generation of Low-Cost, Room-Temperature Electrical X-ray Detectors, Adv. Mater., 24 (2012).

DOI: 10.1002/adma.201200283

Google Scholar

[21] J.W. Kingsley, A.J. Pearson, L. Harris, S.J. Weston, D.G. Lidzey, Detecting 6 MV X-rays using an organic photovoltaic device, Organic Electronics 10 (2009) 1170–1173.

DOI: 10.1016/j.orgel.2009.06.006

Google Scholar

[22] G. Witte and C. Wöll, Physical and Chemical Aspects of Organic Electronics, J. Mater. Res. 19 2004 1889.

Google Scholar

[23] H. Senff, W. Klemm, Magnetochemische Untersuchungen, Journal für Praktische Chemie 1939; 154, 73.

Google Scholar

[24] Hu, L. Yan, and M. Shao, Magnetic-Field Effects in Organic Semiconducting Materials and Devices, Adv. Mater. 21 2009 1500.

DOI: 10.1002/adma.200802386

Google Scholar

[25] R. Aroca, Surface-Enhanced Vibrational Spectroscopy, John Wiley & Sons, England, 1-223 (2006).

Google Scholar

[26] V. Kolotovska, M. Friedrich, D. R. T. Zahn, G. Salvan, V. Kolotovska, M. Friedrich, D. R. T. Zahn, G. Salvan, J. of Crystal Growth 2006, 291, 166, J. of Crystal Growth 291 2006 166-174.

DOI: 10.1016/j.jcrysgro.2006.02.016

Google Scholar

[27] A. Otto, Theory of First Layer and Single Molecule Surface Enhanced Raman Scattering (SERS), phys. stat. sol. (a) 188 (2001) 1445-1470.

DOI: 10.1002/1521-396x(200112)188:4<1455::aid-pssa1455>3.0.co;2-4

Google Scholar

[28] R. Aroca, D. Battisti, G. J. Kovacs and R. O. Loutfy, J. Electrochem. Soc. 1989; 136, 2902.

Google Scholar

[29] E. Barlow and K. W. Hipps, J. Phys. Chem. B 2000; 104, 5993.

Google Scholar

[30] H. Fukagawa, H. Yamane, S. Kera, K. K. Okudaira, and N. Ueno, Journal of Electron Spectroscopy and Related Phenomena 2005; 144–147 , 475.

DOI: 10.1016/j.elspec.2005.01.083

Google Scholar

[31] N. Ueno , S. Kera, K. Sakamoto, and K. K. Okudaira, Energy band and electronvibration coupling in organic thin films: photoelectron spectroscopy as a powerful tool for studying the charge transport, Appl. phys. A. Materials Science and Processing 2008; 92, 495.

DOI: 10.1007/s00339-008-4553-8

Google Scholar