Biological Evaluation and Characterisation of Novel Hydrogel Matrices as Scaffolds for Bone Tissue Engineering

Article Preview

Abstract:

Novel photopolymerised composite hydrogels based on PEGDMA, maleic chitosan and maleic PVA were investigated for their suitability in bone tissue engineering applications. Initial swelling and compression studies revealed that the hydrogels permitted the retention of aqueous solution while still maintaining structural integrity. Promising cytotoxicity data was obtained during direct and indirect contact exposure of composite hydrogels to pre-osteoblast (MC3T3-E1) cells. Hybrid hydrogels displayed minimal cytotoxic properties and allow tailoring of mechanical properties by variation of the loading of the maleic component in the composite. Scanning electron microscopy and live-dead staining of composite hydrogels also revealed that maleic chitosan based gels supported the adhesion of MC3T3-E1 cells and may have potential as bone tissue engineering scaffolds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-75

Citation:

Online since:

October 2014

Export:

Price:

[1] D.S. Morais, M.A. Rodrigues, T.I. Silva, M.A. Lopesb, M. Santosd, J.D. Santosb, C.M. Botelho, Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes, Carbohydrate Polymers 95 (2013) 134– 142.

DOI: 10.1016/j.carbpol.2013.02.067

Google Scholar

[2] C. Laurencin, Y. Kha, S.F. El-Amin, Bone graft substitutes, Expert Rev Med Devices. 1 (2006) 49-57.

DOI: 10.1586/17434440.3.1.49

Google Scholar

[3] D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials. 21 (2000) 2529-2543.

DOI: 10.1016/s0142-9612(00)00121-6

Google Scholar

[4] S. Wang, M. M. Falk, A. Rashad, M. M. Saad, A. C. Marques, R. M. Almeida, M. K. Marei, H. Jain, Evaluation of 3D nano–macro porous bioactive glass scaffold for hard tissue engineering, J Mater Sci: Mater Med. 22 (2011) 1195–1203.

DOI: 10.1007/s10856-011-4297-4

Google Scholar

[5] M. S. Bae, D. H. Yang, J. B. Lee, D. N. Heo, Y. D. Kwon, I. C. Youn, K. Choi, J.H. Hong, G. T. Kim, Y. S. Choi, E. H. Hwang, I. l Kwon, Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold, Biomaterials 32 (2011).

DOI: 10.1016/j.biomaterials.2011.07.045

Google Scholar

[6] J. Fukuda, A. Khademhosseini, Y. Yeo, X. Yang, J. Yeh, G. Eng, J. Blumling, C.F. Wang, D.S. Kohane, R. Langer, Micromoulding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures, Biomaterials 27 (2006) 5259-5267.

DOI: 10.1016/j.biomaterials.2006.05.044

Google Scholar

[7] B.G. Amsden, A. Sukarto, D.K. Knight, S.N. Shapka, Methacrylated glycol chitosan as a photopolymerisable material, Biomacromolecules 8 (2007) 3758-3766.

DOI: 10.1021/bm700691e

Google Scholar

[8] C. Zhong, J. Wu, C.A. Reinhart-King, C. C Chu, Synthesis, characterisation and cytotoxicity of photo-crosslinked maleic chitosan –poly (ethylene glycol) diacrylate hybrid hydrogels, Acta biomaterialia 6 (2010) 3908-3918.

DOI: 10.1016/j.actbio.2010.04.011

Google Scholar

[9] Z. You, X. Bi, X. Fan, Y. Wang, A functional polymer designed for bone tissue engineering, Acta biomaterialia 8 (2011) 502-510.

DOI: 10.1016/j.actbio.2011.11.004

Google Scholar

[10] J. Stasko, M. Kalnins, A. Dzene, V. Tupureina, Poly(vinyl alcohol) hydrogels, Proceedings of the Estonian Academy of Sciences 58 (2009) 63-66.

DOI: 10.3176/proc.2009.1.11

Google Scholar

[11] J. Zhu, Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering, Biomaterials 31 (2010) 4639-4656.

DOI: 10.1016/j.biomaterials.2010.02.044

Google Scholar

[12] C. Zhong, C.C. Chu, Biomimetic mineralization of acid polysaccharide-based hydrogels: towards porous 3-dimensional bone-like biocomposites, J Mater Chem 22 (2012) 6080-6086.

DOI: 10.1039/c2jm15610e

Google Scholar

[13] S.B.S. Sokic, G. Papavasiliou, Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularisation in vitro, Tissue engineering 12 (2012) 1-9.

DOI: 10.1089/ten.tea.2012.0173

Google Scholar

[14] P.J. Flory, Principles of polymer chemistry. Cornell University Press, Ithaca, (1953) NY.

Google Scholar

[15] O. Okay, General properties of hydrogels, (2009) DOI: 10. 1007/978-3-540-75645-3-1.

Google Scholar

[16] C. Yanfeng, Y. Min, Swelling kinetics and stimuli responsiveness of poly(DMAEMA) hydrogels prepared by UV-irradiation, Radiation Physics and Chemistry 61 (2001) 65-68.

DOI: 10.1016/s0969-806x(00)00374-1

Google Scholar

[17] W.R. Moore, S.E. Graves, G.I. Bain, (2001) Synthetic bone graft substitutes, Anz J. Surg. 71 (2001) 354-361.

DOI: 10.1046/j.1440-1622.2001.02128.x

Google Scholar

[18] N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, European Journal of Pharmaceutics and Biopharmaceutics, Review, 50 (2000) 27-46.

DOI: 10.1016/s0939-6411(00)00090-4

Google Scholar

[19] S. He, M. J Yaszemski, A.W. Yasko, P. S Engel, A. G Mikos, Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate, Biomaterials 21 (2000) 2389-2394.

DOI: 10.1016/s0142-9612(00)00106-x

Google Scholar

[20] J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials 24 (2003) 4337-4351.

DOI: 10.1016/s0142-9612(03)00340-5

Google Scholar

[21] J.A. Killion, S. Kehoe, L.M. Geever, D.M. Devine, E. Sheehan, D. Boyd, C.L. Higginbotham, Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation, Materials science and engineering 33 (2013).

DOI: 10.1016/j.msec.2013.06.013

Google Scholar

[22] M.I. Baker, S.P. Walsh, Z. Schwartz, B.D. Boyan, A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications, J Biomed Mater Res Part B 00B (2012) 1-7 (Review Paper).

DOI: 10.1002/jbm.b.32694

Google Scholar

[23] A. Datta, Characterisation of polyethylene glycol hydrogels for biomedical applications. (Thesis) (2007) Louisana State University.

Google Scholar

[24] S.N. Dobic, J.S. Jovasevic, M. D Vojisavlijevic, S. L Tomic, Hemocompatibility and swelling studies of poly (2-hydroxyethyl methacrylate-co-itaconic acid-co-poly (ethylene glycol dimethacrylate hydrogels, Hem. Ind 65 (2012) 675–685.

DOI: 10.2298/hemind111005102d

Google Scholar

[25] S.A. Meenach, J. Z Hillt, K.W. Anderson, Poly (ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy, Acta Biomaterialia 6 (2010) 1039-1046.

DOI: 10.1016/j.actbio.2009.10.017

Google Scholar

[26] Q. Li, D. Yang, G. Ma, Q. Xu, X. Chen, F. Lu, J. Nie, Synthesis and characterisation of chitosan based hydrogels, International Journal of Biological Molecules 44 (2009) 121-127.

DOI: 10.1016/j.ijbiomac.2008.11.001

Google Scholar

[27] S. Tanodekaew, M. Prasitslip, S. Swasdison, B. Thavornyutikarn, T. Pothsree, R. Pateepasen, (2004) Preperation of acryic grafted chitin for wound dressing application, Biomaterials 25 (2004) 1453-1460.

DOI: 10.1016/j.biomaterials.2003.08.020

Google Scholar

[28] R. Rajaraman, D.E., Roundsa, S.P. S Yenb, A. Rembaumb, A scanning electron microscope study of cell adhesion and spreading in vitro, Experimental Cell Research, 88 (1974) 327-339.

DOI: 10.1016/0014-4827(74)90248-1

Google Scholar

[29] S. Srouji, S. Maurice, E. Livine, Microscopy analysis of bone marrow derived osteoprogenitor cells cultured on hydrogel 3-D scaffold, Microsc Res Tech 66 (2005) 132-13.

DOI: 10.1002/jemt.20144

Google Scholar

[30] J. Zhu, Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering, Biomaterials 31 (2010) 4639-4656.

DOI: 10.1016/j.biomaterials.2010.02.044

Google Scholar