Progress on the Precious Metals Used in High-Temperature Protective Coatings

Article Preview

Abstract:

Nickel-based super alloy, niobium alloy, refractory metal and carbon fiber reinforced composite are the most common structural materials used in aviation and spaceflight fields. Reduced oxidation and corrosion resistance at high temperature are limiting factors to the application of theses materials. Adapted protective coatings such as pure precious metal coatings, precious metal alloy and precious metal composite coatings can be applied on the surface of theses materials. New advances of oxidation protective coating in recent years are reviewed in this paper, combined with some research on the preparation of iridium

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-55

Citation:

Online since:

October 2014

Export:

Price:

* - Corresponding Author

[1] El-Genk M S, Tournier J M. A Review of Refractory Metal Alloys and Mechanically Alloyed-oxide Dispersion Strengthened Steels for Space Nuclear Power Systems[J]. Journal of Nuclear materials, 2005, 340(1): 93-112.

DOI: 10.1016/j.jnucmat.2004.10.118

Google Scholar

[2] Potgieter J H, Maledi N B, Sephton M, et al. The Platinum Development Initiative: platinum-based alloys for high temperature and special applications: part IV[J]. Platinum Metals Review, 2010, 54(2): 112-119.

DOI: 10.1595/147106710x492378

Google Scholar

[3] Yanqiong L, Junmin Z, Weiming G, et al. High Temperature Oxidation Behavior of Platinum Modified Aluminide Coatings on Nickel-Based Superalloys[J]. Rare Metal Materials and Engineering, 2010, 10: 009.

Google Scholar

[4] Mengjin Li, Xiaofeng Sun, et al. Behavior of Pd Modified Aluminide Coating at High Temperature[J]. Journal of Materials Science & Technology, 2003, 19(3): 213-217.

Google Scholar

[5] Hou P Y, Tolpygo V K. Examination of the platinum effect on the oxidation behavior of nickel-aluminide coatings[J]. Surface and Coatings Technology, 2007, 202(4): 623-627.

DOI: 10.1016/j.surfcoat.2007.06.013

Google Scholar

[6] Haynes J A, Zhang Y, Cooley K M, et al. High-temperature diffusion barriers for protective coatings[J]. Surface and Coatings Technology, 2004, 188: 153-157.

DOI: 10.1016/j.surfcoat.2004.08.066

Google Scholar

[7] S. Ford, R. Kartono, D.J. Young. Oxidation Resistance of Pt-modified γ/γ' Ni-Al at 1150℃[J]. Surface and Coatings Technology, 2010, 204: 2051–(2054).

DOI: 10.1016/j.surfcoat.2009.08.027

Google Scholar

[8] Pytel M, Góral M, Nowotnik A, et al. Heat Treatment and CVD Aluminizing of Ni-base René 80 Superalloy[J]. Journal of Achievements in Materials and Manufacturing Engineer, 2012, 51(1): 30-38.

Google Scholar

[9] Wing R G, McGill I R. The Protection of Gas Turbine Blades [J]. Platinum Met. Rev, 1981, 25(3): 94.

Google Scholar

[10] Li Zhengxian. High Temperature Oxidation Resistant Coating on Nb Alloy Surface[J]. Rare Metals Letters, 2006, 25(4): 5-9.

Google Scholar

[11] Xiao Lairong, Yi Danqing, Yin Lei, Cai Zhigang, Morphology and Structure of High Temperature MoSi2 Coating on Niobium [J]. Transaction of Nonferrous of Metals Society of China, 2005, 1(15): 18-22.

Google Scholar

[12] O.J. Lu-Steffes, R. Sakidja, J. Bero, J.H. Perepezko. Multicomponent Coating for Enhanced Oxidation Resistance of Tungsten [J]. Surface & Coatings Technology, 2012 (207): 614–619.

DOI: 10.1016/j.surfcoat.2012.08.011

Google Scholar

[13] Majumdar S, Sharma I G, Suri A K. Development of Oxidation Resistant Coatings on Mo–30W Alloy[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(6): 549-554.

DOI: 10.1016/j.ijrmhm.2008.01.005

Google Scholar

[14] Rödhammer P, Knabl W, Semprimoschnig C, et al. Protection of Nb-and Ta-based Alloys against High Temperature Oxidation[J]. International Journal of Refractory metals and hard materials, 1994, 12(5): 283-293.

DOI: 10.1016/0263-4368(93)90036-f

Google Scholar

[15] Jin Shi. The coating Committee of the United States National Materials Advisory, High-temperature Oxidation-resistant Coating[M]. Beijing: Science Press, (1980).

Google Scholar

[16] Chou T C. Solid State Reactions between MoSi< sub> 2</sub> and Ir[J]. Scripta Metallurgica et Materialia, 1990, 24(6): 1131-1136.

DOI: 10.1016/0956-716x(90)90312-5

Google Scholar

[17] Huang Jianfeng, Li Hejun, Xiong Xinbo. Progress on the Oxidation Protective Coating of Carbon-carbon Composite [J]. New Carbon Materials, 2005, 20(4): 373-379.

Google Scholar

[18] Jiao Gengsheng, Li Hejun, Li Kezhi. Multi-composition Oxidation Resistant Coating for SiC-coated [J]. Materials Science and Engineering A 486 (2008) 556–561.

DOI: 10.1016/j.msea.2007.09.042

Google Scholar

[19] Zheng X H, Du Y G, Xiao J Y, et al. Double Layer Oxidation Resistant Coating for Carbon Fiber Reinforced Silicon Carbide Matrix Composites [J]. Applied surface science, 2009, 255(7): 4250-4254.

DOI: 10.1016/j.apsusc.2008.11.018

Google Scholar

[20] Criscione J M, Mercuri R A, Schram E P, et al. High Temperature Protective Coatings for Graphite[R]. UNION CARBIDE CORP PARMA OH, (1964).

Google Scholar

[21] Lloyd Snell, Avery Nelson, Pal Molian. A Novel Laser Technique for Oxidation-resistant Coating of Carbon–carbon Composite. Carbon, 2001, (39): 991–999.

DOI: 10.1016/s0008-6223(00)00200-1

Google Scholar

[22] Harding J T, Fry V R. Oxidation Protection of Refractory Materials by CVD Coatings of Iridium and other Platinum Group Metals[C]/Proc. 10th. Int. Precious Metals Conf. 1986: 431.

Google Scholar

[23] Harding J T, Kazaroff J M, Appel M A. Iridium-coated Rhenium Thrusters by CVD[R]. National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center, (1988).

Google Scholar

[24] Schneider S J. High Temperature Thruster Technology for Spacecraft Propulsion[J]. Acta Astronautica, 1992, 28: 115-125.

DOI: 10.1016/0094-5765(92)90016-c

Google Scholar

[25] Wooten J R, Lansaw P T. High Temperature Oxidation-resistant Thruster Research[R]. AEROJET PROPULSION DIV SACRAMENTO CA, (1990).

Google Scholar

[26] Jassowski D M. Advanced Small Rocket Chambers Basic Program and Option II-Fundamental Progresses and Material Evaluation [J]. NASA CR-195349, 1993, 352.

Google Scholar

[27] Fortini A J, Tuffias R H, Kaplan R B, et al. Iridium/rhenium Combustion Chambers for Advanced Liquid Rocket Propulsion [J]. Minerals, Metals and Materials Society/AIME, Iridium(USA), 2000: 217-225.

DOI: 10.2514/6.1999-2894

Google Scholar

[28] Löffler F. Functional Metal-based Coatings on Ceramic Substrates [J]. Surface and Coatings Technology, 2000, 132(2): 222-227.

DOI: 10.1016/s0257-8972(00)00868-9

Google Scholar

[29] Hu changyi, Li jinghua, Wang yun et al. Preparation and SEM Investigation of Chemical vapor Depositon Iridium [J]. Nonferrous Metals, 2002, 54: 33-36.

Google Scholar

[30] Cai Hongzhong, Chen Li, Wei Yan Hu Changyi. Deposition Effectiveness Investigation of Ir Film Prepared by MOCVD [J]. Rare Metal Materials and Engineering2010, 39(2): 209- 213.

DOI: 10.1016/s1875-5372(10)60081-1

Google Scholar

[31] WEI Yan, HU Changyi, WANG Yun et al. Chemical Vapor Deposition of Platinum Group Metals Coatings and Refractory Metals [J]. Precious Metals, 2008, 29(2): 62-66.

Google Scholar

[32] Wangping W U, Zhaofeng C. Growth Mechanism of Polycrystalline Ir Coating by Double Glow Plasma Technology[J]. Acta Metallurgica Sinica (English letters), 25(6): 469-479.

Google Scholar

[33] Harding W B. Electrodeposition of Platinum, Iridium, and Platinum—Iridium Alloy Coatings from Molten Salt Electrolytes[J]. Plating and Surface Finishing, 1978, 65(2): 30.

Google Scholar