Quantitative Trait Locus Analysis for Yield Traits of Cassava (Manihot esculenta Crantz)

Article Preview

Abstract:

The QTLs associated with cassava yield traits were detected by two-QTL model (unconditional and conditional QTLs) approaches after planting for 90 d, 180 d and 270 d in the present study. A genetic linkage map was constructed with a segregating F1 population derived from a cross of 2 heterozygous parental plants from the cultivars South China 6 and Mianbao, and analysed with 39 SSR markers. The constructed linkage map of cassava consisted of 12 linkage groups covering a total length of 694.59 cM with a mean distance of 17.81 cM between two markers. The F1 population was evaluated for components of yield including fresh root yield (FRY), harvest index (HI), and starch content in dry root weight (SC) at 90 d, 180 d and 270 d. The identification of QTLs for yield traits at three growth periods explained 56.4% for FRY, 16.3% for HI and 27.3% for SC, suggesting characterization of yield components. The work made a step closer to understand the persistence of quantitative genetic variations of cassava in different development periods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-288

Citation:

Online since:

September 2014

Export:

Price:

* - Corresponding Author

[1] Gu B., Yao Q.Q., Li L.M., Chen S.B. Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors. Starch/Stärke. 65 (2013), pp.253-263.

DOI: 10.1002/star.201200028

Google Scholar

[2] Okogbenin E., Fregene M. Genetic analysis and QTL mapping of early root bulking in an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics. 106 (2002), pp.58-66.

DOI: 10.1007/s00122-002-1068-0

Google Scholar

[3] Okogbenin E., Fregene M. Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in Cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics. 107 (2003), pp.1452-62.

DOI: 10.1007/s00122-003-1383-0

Google Scholar

[4] Wydra K., Zinsou V., Jorge V., Verdier V. Identification of Pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and Detection of Quantitative Trait Loci and Markers for Resistance to Bacterial Blight of Cassava. Phytopathology. 94 (2004).

DOI: 10.1094/phyto.2004.94.10.1084

Google Scholar

[5] Fu Y.H., Li J., Wang H.Y., Yang Z.X., Wang W.Q. Establishment of fingerprints for several commercial cultivars in cassava. Journal of Plant Genet Resources. 8 (2007), pp.51-55.

Google Scholar

[6] Balyejusa K.E., Rönnberg-Wästljung A.C., Egwang T., Gullberg U., Fregene M., Westerbergh A. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas. 144 (2007).

DOI: 10.1111/j.2007.0018-0661.01975.x

Google Scholar

[7] Whankaew S., Poopear S., Kanjanawattanawong S., Tangphatsornruang S., Boonseng O., Lightfoot D.A., Triwitayakorn K. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics. 12 (2011).

DOI: 10.1186/1471-2164-12-266

Google Scholar

[8] Akano O., Dixon O., Mba C., Barrrea E., Fregene M. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theoretical and Applied Genetics. 105 (2002), pp.521-525.

DOI: 10.1007/s00122-002-0891-7

Google Scholar

[9] Kawano K., Narintaraporn K., Narintaraporn P., Sarakarn S., Limsila A., Limsila J., Suparhan D., Sarawat V., Watananonta W. Yield improvement in a multistage breeding program for cassava. Crop Science. 38 (1998), pp.325-332.

DOI: 10.2135/cropsci1998.0011183x003800020007x

Google Scholar

[10] Yan J.Q., Zhu J., He C.X., Benmoussa M., Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L). Theoretical and Applied Genetics. 97 (1998), pp.267-274.

DOI: 10.1007/s001220050895

Google Scholar

[11] Yan J.B., Tang H., Huang Y.Q. Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L. ). Chinese Science Bulletin. 48 (2003), pp.2601-2607.

DOI: 10.1360/03wc0044

Google Scholar

[12] Sun D.S., Li W.B., Zhang Z.C., Chen Q.S., Yang Q.K. Analysis of QTL for Plant Height at Different Developmental Stages in Soybean. Acta Agronomica Sinica. 32 (2006), pp.509-514.

Google Scholar

[13] Xie H.L., Duan L.J., Wu X., Zhao S.Z., Zhu Z.X., Cui Z.T., Fu Z.J., Tang J.H. QTL Analysis of Protein Content in Maize Kernels at Different Developing Stages. Acta Agriculturae Universitatis Henanensis. 42 (2008), pp.371-374.

Google Scholar

[14] He C.X., Zhu J., Yan J.Q., Benmoussa M., Wu P. QTL mapping for developmental behaviour of panicle dry weight in rice. Scientia Agricultura Sinica. 33 (2000), pp.24-32.

Google Scholar

[15] Rodriguez-Zas S.L., Southey B.R., Heyen D.W., Lewin H.A. Detection of quantitative trait loci influencing dairy traits using a model for longitrudinal data. Journal of Dairy Science. 85 (2002) , pp.2681-2691.

DOI: 10.3168/jds.s0022-0302(02)74354-3

Google Scholar

[16] Wu W., Zhou Y., Li W., Mao D., Chen Q. Mapping of quantitative trait loci based on growth models. Theoretical and Applied Genetics. 105 (2002), pp.1043-1049.

DOI: 10.1007/s00122-002-1052-8

Google Scholar

[17] Hunt R. Plant growth curves - The Functional Approach to Plant Growth. London: Edward Arnold, 1982, p.248.

Google Scholar

[18] Kawano K., Goncalvez Fukuda W.M., Cenpukdee U. Genetic and environmental effects on dry matter content of cassava root. Crop Science. 27 (1987), pp.69-74.

DOI: 10.2135/cropsci1987.0011183x002700010018x

Google Scholar

[19] Liu L., Guo W., Zhu X., Zhang T. Inheritance and fine mapping of fertility-restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theoretical and Applied Genetics. 106 (2003), pp.461-469.

DOI: 10.1007/s00122-002-1084-0

Google Scholar

[20] Mba R.E.C., Stephenson P., Edwards K., Melzer S., Mkumbira J., Gullberg U., Apel K., Gale M., Tohme J., Fregene M. Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theoretical and Applied Genetics. 102 (2001).

DOI: 10.1007/s001220051614

Google Scholar

[21] Tsuro M., Suwabe K., Kubo N., Matsumoto S., Hirai M. Construction of a linkage map of radish (Raphanus sativus L. ), based on AFLP and Brassica-SSR markers. Breeding Science. 55 (2005), pp.107-111.

DOI: 10.1270/jsbbs.55.107

Google Scholar

[22] Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newberg L.A. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1 (1987).

DOI: 10.1016/0888-7543(87)90010-3

Google Scholar

[23] Zeng Z.B. Precision mapping of quantitative trait loci. Genetics. 136 (1994), pp.1457-1468.

DOI: 10.1093/genetics/136.4.1457

Google Scholar

[24] Wu W.R., Li W.M., Tang D.Z., Lu H.R., Worland A.J. Time-related mapping of quantitative trait loci underlying tiller mumber in rice. Genetics. 151 (1999), pp.297-303.

DOI: 10.1093/genetics/151.1.297

Google Scholar

[25] Cheng Y., Wang Q., Ban Q.Y., Geng J.F., Zhang X.W., Yi Y., Hou X.L. Unconditional and conditional quantitative trait loci mapping for plant height in nonheading Chinese cabbage. Hortscience. 44 (2009), pp.268-273.

DOI: 10.21273/hortsci.44.2.268

Google Scholar

[26] Zeng, Z.B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America. 90 (1993), pp.10972-10976.

DOI: 10.1073/pnas.90.23.10972

Google Scholar

[27] Rieseberg L.H., Archer M.A., Wayne R.K. Transgressive segregation, adaptation and speciation. Heredity. 83 (1999), pp.363-372.

DOI: 10.1038/sj.hdy.6886170

Google Scholar

[28] O'Leary M.C., Boyle T.H. Segregation distortion at isozyme locus Lap-1 in Schlumbergera (Cactaceae) is caused by linkage with the gametophytic self-incompatibility (S) locus. J. The Journal of Heredity. 89 (1998), pp.206-210.

DOI: 10.1093/jhered/89.3.206

Google Scholar

[29] Dintinger J.A., Salgon S., Reynaud B. QTL mapping of a partial resistance to the corn delphacid-transmitted viruses in Lepidopteran-resistant maize line Mp705. Plant Breeding. 133 (2014), pp.19-27.

DOI: 10.1111/pbr.12135

Google Scholar

[30] Liu J., Niu F.A., Jiang J.H., Sun C., Chen L., Guo Y., Fu S.H., Hong D.L. Unconditional and conditional QTL mapping for yield and yield related traits in japonica rice in multi environments. Chinese Journal of Rice Science. 26 (2012), pp.144-154.

Google Scholar