Electrical and Magnetic Properties of Multiferroic BiFeO3 Ceramics Prepared Using Sol-Gel Derived Fine Powders

Article Preview

Abstract:

Insulating BiFeO3 ceramics with a small amount of secondary phase Bi2Fe4O9 were prepared by rapid sintering at 840 °C using sol-gel derived fine powders. The ceramics are dense and consist of grains of 3∼8 μm in size. Their leakage current density remains lower than 5.5×105 A/cm2 under the applied electrical field below 100 kV/cm. The main conduction mechanism from 50−190 kV/cm is space-charge-limited-current relating to oxygen vacancies. The ceramics exhibit a saturated ferroelectric hysteresis loop with a remanent polarization (2Pr = 22 μC/cm2) under the applied field of 165 kV/cm. Weak ferromagnetism was observed with a remanent magnetization 2Mr of 1.2×104 μB/Fe at 300 K and of 1.8×104 μB/Fe at 10 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-173

Citation:

Online since:

August 2014

Authors:

Export:

Price:

* - Corresponding Author

[1] E.K. H Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals Cambridge Univ. Press, Cambridge, (1990).

Google Scholar

[2] G.A. Smolenskil, I. Chupis, Sov. Phys. Usp. 25, 475 (1982).

Google Scholar

[3] J. Wang, J.B. Neaton, H. Zheng and R. Ramesh, Science 299, 1719 (2003).

Google Scholar

[4] K.Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata and K. Saito, J. Appl. Phys. 96, 3399 (2004).

Google Scholar

[5] S.Y. Yang, F. Zavaliche and R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005).

Google Scholar

[6] M.M. Kumar, V.R. Palkar, K. Srinivas, and S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).

Google Scholar

[7] Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004).

Google Scholar

[8] S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, and N.B. Ming, Appl. Phys. Lett. 87, 262907 (2005).

Google Scholar

[9] F. Gao, Y. Yan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu and Z.F. Ren, Appl. Phys. Lett. 89, 102526 (2006).

Google Scholar

[10] D. P. Dutta , B.P. Mandal , R.N.G. Lawes , and A. K. Tyagi, J. Phys. Chem. C, 2013, 117 (5).

Google Scholar

[11] C . Ederer and N.A. Spldin, Phys. Rev. B 71, 060401 (2005).

Google Scholar

[12] W.N. Su, D.H. Wang, Q.Q. Cao, Z.D. Han, J. Yin, J.R. Zhang, and Y.W. Du, Appl. Phys. Lett. 91, 092905 (2007).

Google Scholar

[13] W.J. Luo, D.L. Wang, F.W. Wang, T. Liu, J.W. Cai, L.Y. Zhang and Y.L. Liu, Appl. Phys. Lett. 94, 202507 (2009).

Google Scholar

[14] Z.H. Dai and Y. Akishige, J. Phys. D: Appl. Phys, 43, 445403 (2010).

Google Scholar

[15] M.C. Li, J.L. Judith Driscoll, L.H. Liu and L.C. Zhao, Mater. Sci. &Eng. A, 348, 438 (2006).

Google Scholar

[16] F. Chen, Q.F. Zhang, J.H. Li, Y.J. Qi, C.J. Lu, X.B. Chen, X.M. Ren and Y. Zhao, Appl. Phys. Lett. 89, 092910 (2006).

Google Scholar

[17] J.G. Simmons, in Handbook of Thin film Technology, edited by L I Maissel and R Glang (McGraw-Hill, New York, 1970), pp.14-35.

Google Scholar

[18] N Shamir, E Gurewitz, and H Shaked, Acta. Cryst. A34, 662 (1978).

Google Scholar