Surface Properties and Cell Response of Bioactive Thermally Grown TiO2 Nanofibers

Article Preview

Abstract:

Titania nanofiber (TiO2 NFs) arrays were fabricated in situ on a Ti-6Al-4V substrate by an oxidation process. Their surface morphology, crystallographic structure, surface roughness and wettability were characterized, as well as their in vitro interaction with bovine articular chondrocytes at different time points. Results showed that TiO2 NFs possessed greater surface roughness, hydrophilicity and degree of crystallinity. The in vitro cell studies revealed that TiO2 NFs substrate triggers enhanced cell adhesion, proliferation and extracellular matrix (ECM) formation compared to the untreated control sample. These results showed that chondrocytes have an affinity to the nanofibrous substrate surface and thus we suggest that such surfaces are suited to be used as an implant designed for cartilage growth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-222

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] W.Q. Yu, Y.L. Zhang, X.Q. Jiang, F.Q. Zhang, In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes, Oral Dis 16 (7) (2010) 624-630.

DOI: 10.1111/j.1601-0825.2009.01643.x

Google Scholar

[2] Y. Bai, I.S. Park, H.H. Park, M.H. Lee, T.S. Bae, W. Duncan, M. Swain, The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes, Surface and Interface Analysis 43 (6) (2011) 998-1005.

DOI: 10.1002/sia.3683

Google Scholar

[3] S. Ban, Y. Iwaya, H. Kono, H. Sato, Surface modification of titanium by etching in concentrated sulfuric acid, Dental Materials 22 (12) (2006) 1115-1120.

DOI: 10.1016/j.dental.2005.09.007

Google Scholar

[4] X. Hu, H. Shen, K. Shuai, E. Zhang, Y. Bai, Y. Cheng, X. Xiong, S. Wang, J. Fang, S. Wei, Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies, Applied Surface Science 257 (6) (2011).

DOI: 10.1016/j.apsusc.2010.08.082

Google Scholar

[5] A. Tavangar, B. Tan, K. Venkatakrishnan, Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation, Acta Biomater 7 (6) (2011) 2726-2732.

DOI: 10.1016/j.actbio.2011.02.020

Google Scholar

[6] B. Ding, C.K. Kim, H.Y. Kim, M.K. Se, S.J. Park, Titanium dioxide nanoribers prepared by using electrospinning method, Fiber. Polym. 5 (2) (2004) 105-109.

DOI: 10.1007/bf02902922

Google Scholar

[7] J.H. Lim, J. Choi, Titanium oxide nanowires originating from anodically grown nanotubes: The Bamboo-splitting model, Small 3 (9) (2007) 1504-1507.

DOI: 10.1002/smll.200700114

Google Scholar

[8] X.D. Wang, J. Shi, Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition, Journal of Materials Research 28 (3) (2013) 270-279.

DOI: 10.1557/jmr.2012.356

Google Scholar

[9] H. Lee, S. Dregia, S. Akbar, M. Alhoshan, Growth of 1-D TiO2 Nanowires on Ti and Ti Alloys by Oxidation, Journal of Nanomaterials 2010 (2010).

DOI: 10.1155/2010/503186

Google Scholar

[10] A. Tan, B. Pingguan-Murphy, R. Ahmad, S. Akbar, Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review, J. Mater. Sci. 48 (24) (2013) 8337-8353.

DOI: 10.1007/s10853-013-7659-0

Google Scholar