Preparation and Structure of Chitosan Swellable in Alkali Solution by Ultrasonic Treatment

Article Preview

Abstract:

By treating chitin with ultrasonic in hot concentrated NaOH solution for about 30-120min, chitosan swellable highly in alkali was prepared. The swelling behavior and the structure of the prepared chitosan were invested. It was shown that the prepared chitosan can swell highly in NaOH solution by freeze-thawing treatment, with the particles turns into hydrogel. The swelling behavior showed that with the increase of NaOH concentration, the swelling degree of chitosan increases, until a concentration of 8.0 wt%, and ultrasonic treatment time has less significant influence on the swelling behavior. SEM showed that ultrasonic treatment makes the structure of chitin enough looser for the permeation of NaOH and H2O, resulting in the swelling of chitosan in alkali solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

456-460

Citation:

Online since:

May 2011

Export:

Price:

[1] Q. Hu, B. Li, M. Wang and J. Shen: Biomaterials. 25 (2004), p.779.

Google Scholar

[2] M.N.V.R. Kumar: React. Funct. Polym. 46 (2000), p.1.

Google Scholar

[3] M. Rinaudo: Prog. Polym. Sci. 31(2006), p.603.

Google Scholar

[4] R.A.A. Muzzarelli, in: Polymeric biomaterials, Marcel Dekker publisher New York, 1994; p.179.

Google Scholar

[5] J. Xu, S.P. McCarthy, and R.A. Gross: Macromolecules. 29 (1996) , p.3436.

Google Scholar

[6] M.V. Risbud and R. R. Bhonda: Drug. Deliv. 7 (2000), p.69.

Google Scholar

[7] T. Sannan, K. Kurita and Y. Iwakura: Makromol. Chem. 177 (1976), p.3589.

DOI: 10.1002/macp.1976.021771210

Google Scholar

[8] Y. Zhang, C. Xue, Z. Li, Y. Zhang and X. Fu: Carbohydr. Polym. 65 (2006), p.229.

Google Scholar

[9] K. Kurita, M. Kamiya and S. Nishimura: Carbohydr. Polym. 16 (1991), p.83.

Google Scholar

[10] Y.W. Cho, J. Jang, C.R. Park and S.W. Ko: Biomacromolecules. 1 (2000), p.609.

Google Scholar

[11] S. Aiba: Int. J. Biol. Macromol. 13 (1991), p.40.

Google Scholar

[12] K. Kurita, Y. Koyoma, S. Nishimura and M. Kamiya: Chem. Lett. (1989), p.1597.

Google Scholar

[13] K. Kurita, H. Ikeda, Y. Yoshida, M. Shimojoh and M. Harata: Biomacromolecules. 3 (2002), p.1.

Google Scholar

[14] R.J. Nordtveit, K.M. Vårum and O. Smidstrød: Carbohydr. Polym. 29 (1996), p.163.

Google Scholar

[15] D. Tahtat, C. Uzun, M. Mahlous and O. Güven: Nucl. Instrum. Meth. B. 265 (2007), p.425.

Google Scholar

[16] M. Fan, Q. Hu and K. Shen: Carbohydr. Polym. 78 (2009), p.66.

Google Scholar

[17] L. Raymond, F.G. Morin and R.H. Marchessault: Carbohydr. Res. 246 (1993), p.331.

Google Scholar

[18] G.A.F. Roberts, in: Chitin chemistry (1st ed. ). Macmillan Publisher, London. (1992).

Google Scholar

[19] M. Zhang, A. Haga, H. Sekiguchi and S. Hirano: Int. J. Biolo. Macromol. 27 (2000), p.99.

Google Scholar