Numerical Simulation on the Dynamics for the Ultrasonic Cavitation Bubble in Chitosan Solution

Article Preview

Abstract:

In order to understand the influencing factors and laws on the ultrasonic cavitation dynamics in chitosan solution, numerical simulation of cavitation bubble motion had been performed based on Rayleigh-Plesset equation and the equation was solved by using 4~5 order Runge–Kutta algorithm. By numerical simulation the effects of frequency and intensity of ultrasonic, ambient pressure, initial bubble radius, concentration and temperature of solution, dual-frequency ultrasonic on the motion of cavitation bubble were discussed. The results show that for improving the effect of cavitation in chitosan solution, ultrasonic cavitation should be under the conditions of lower frequency, lower intensity, lower ambient pressure, smaller initial cavitation bubble, moderate temperature of solution and lower concentration. It is also found that the cavitation intensity due to dual-frequency ultrasonic is stronger than that of single-frequency ultrasonic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

628-634

Citation:

Online since:

January 2013

Export:

Price:

[1] M.N.V.R. Kumar: Reacttive & Functional Polymers, 46, 1–27(2000).

Google Scholar

[2] J.P. Latge: Molecular Microbiology, 66(2), 279–290(2007).

Google Scholar

[3] H. Merzendorfer, Chitin.In: Gabius,H.J(Ed), The Sugar Code:Fundamentals of Glycosciences, Wiley-VCH, Weinheim, pp, 217–229(2009).

Google Scholar

[4] N.K. Peters: Current Biology, 7(4), R223–R226(1997).

Google Scholar

[5] F. Hoppe-Seiler, Ber Dtsch Chem Ges, 27, 3329-33319(1994).

Google Scholar

[6] G.A.F. Roberts, Structure of chitin and chitosan. In: Roberts, G.A.F (ed), Chitin chemistry, Houndmills, Macmillan, pp, 1-53(1992).

Google Scholar

[7] M. George, T.E. Abraham, Journal of Controlled Release, 114, 1–14(2006).

Google Scholar

[8] F. Shahidi, J.K.V. Arachchi, Y.J. Jeon, Trends in Food Science & Technology, 10(2), 37–51(1999).

Google Scholar

[9] J.K.F. Suh, H.W.T. Mattew: Biomaterials, 21(24), 2589–2598(2000).

Google Scholar

[10] M. Rinaudo: Progress in Polymer Science, 31(7), 603–632(2006).

Google Scholar

[11] P.J. Chien, F. Sheu, H.R. Lin: Food Chemistry, 100(3), 1160–1164(2007).

Google Scholar

[12] N. Liu, X.G. Chen, H.J. Park, C.G. Liu, C.S. Liu, X.H. MENG: Carbohydrate Polymers, 64(1), 60–65(2006).

Google Scholar

[13] C.Q. Qin, B. Zhou, L.T. Zeng, Z.H. Zhang, Y. Liu: Food Chemistry, 84, 107–115(2004).

Google Scholar

[14] V.E. Tikhonov, E.A. Stepnova, V.G. Babak, I.A. Yamskov: Carbohydrate Polymers, 64(1), 66-72(2006).

Google Scholar

[15] G.G. Allan, M. Perron: Carbohydrate Research, 1995, 277(2), 257-272(1995).

Google Scholar

[16] A.J. Dong, D.X. Sun: Plomer Materials Science and Engineering, 16(2), 41-43(2000). (In Chinese).

Google Scholar

[17] M. Hasegawa, A. Isogai, F. Onabe: Carbohydr Polymers. 20(4), 279–283(1993).

Google Scholar

[18] D.Z. Dai, L.M. Xia, X.N. Fang: Journal of functional polymers, 18(4), 687-691(2005). (In Chinese).

Google Scholar

[19] M. Terbojevich, A. Cosani, R.A.A. Muzzarelli: Carbohydrate Polymers, 29, 63-68(1996).

Google Scholar

[20] M. Yalpani, M. Pantaleone: Carbohydrate Research, 256, 159–175(1994).

Google Scholar

[21] L. Huang, M.L. Zhai, J. Peng: Carbohydrate Polymers, 67, 305-312(2007).

Google Scholar

[22] Waikiewicz, J.M., Yoshii, F., Nagasawa, N., et al. Radiation physics and chemistry, 2005, 73(5), 287-295.

Google Scholar

[23] R. Czechowska-Biskup, B. Rokita, S. Lotfy: Carbohydrate Polymers, 60(2): 175-184(2005).

DOI: 10.1016/j.carbpol.2004.12.001

Google Scholar

[24] W.P. Wang, Y.M. Du, Y.L. Qiu: Carbohydrate Polymers, 2008, 74, 127-132(2008).

Google Scholar

[25] F. Zhang, J.M. Ying, L.J. Ding: Polymer Materials Science & Engineering, 2004, 20, 221-223. (In Chinese).

Google Scholar

[26] C.Y. Lii, C.H. Chen, A.I. Yeh, V.M.F. Lai, Food Hydrocolloids, 13(6), 477-481(1999).

Google Scholar

[27] J.P. Lorimer, T.J. Mason, T.C. Guthbert, E.A. Brookfied: Ultrasonics Sonochemistry, 2, S55-S57(1995).

Google Scholar

[28] S. Koda, H. Mori, K. Matsumoto, H. Nomura: Polymer, 35, 30-33(1994).

Google Scholar

[29] A. Gronroos, P. Pirkonen, J. Heikkinen: Ultrasonics Sonochemistry, 8(3), 259-264(2001).

Google Scholar

[30] M.L. Tsaih, L.Z. Tseng, R.H. CHEN: Polymer Degradation and Stability, 86, 25-32(2004).

Google Scholar

[31] N. Feng,, J. Z. Yao, L.X. Guang: Ultrasonic handbook. In Feng, N (ed). Nanjing, Nanjing University Press, 81(1998). (In Chinese).

Google Scholar

[32] D.F. Zhang: Method of numerical calculation with MATLAB. Beijing, China Machine Press, 227-234(2010). (In Chinese).

Google Scholar

[33] I. Pepic, J. Filipovic-Grcic, I. Jalsenjak: Collids and Surfaces A: Physicochem and engineering Aspects, 327(1-3), 95-102(2008).

Google Scholar

[34] X.K. Li, Q.X. Jiang, W.S. Xia: Science and technology of food industry, 2, 65-68(2011). (In Chinese).

Google Scholar

[35] W. Wang, D.S. Xu: Acta polymerica sinica, 3, 291-295(1995). (In Chinese).

Google Scholar