Multiferroic Properties and Piezoelectric Characterizations of Bismuth Ferrite Based Compounds Produced by Spark Plasma Sintering

Article Preview

Abstract:

In this work, high dense, single phase ceramics of the 0.3BiFeO3 0.7BaTiO3 multiferroic solid solution were prepared by spark plasma sintering. The structural, microstructural, multiferroic and piezoelectric properties were investigated. The samples presented good magnetic and ferroelectric properties, Pr = 8.3 μC/cm2 and Mr = 0.03 emu/g, with low dielectric AC losses below the ferroelectric transition temperature. The obtained piezoelectric coefficients were determined as d31 = -8.1 pm/V and d33 = 13.5 pm/V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-262

Citation:

Online since:

July 2014

Export:

Price:

* - Corresponding Author

[1] N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics, Science 309 (2005) 391-392.

DOI: 10.1126/science.1113357

Google Scholar

[2] W. Erenstein, N.D. Mathur, J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759-765.

DOI: 10.1038/nature05023

Google Scholar

[3] S.O. Leontsev, R.E. Eitel, Dielectric and Piezoelectric Properties in Mn-Modified (1-x)BiFeO3 - (x)BaTiO3 Ceramics, J. Am. Ceram. Soc. 92 (2009) 2957- 2961.

DOI: 10.1111/j.1551-2916.2009.03313.x

Google Scholar

[4] M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure Property Relations in BiFeO3/BaTiO3 Solid Solutions, J. Appl. Phys. 87 (2000) 855-862.

DOI: 10.1063/1.371953

Google Scholar

[5] R.A.M. Gotardo, D.S.F. Viana, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F. Alves, L.F. Cotica, I.A. Santos, A.A. Coelho, Ferroic states and phase coexistence in BiFeO3BaTiO3 solid solutions, J. Appl. Phys. 112 (2012).

DOI: 10.1063/1.4766450

Google Scholar

[6] R.A.M. Gotardo, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, L.F. Cotica, I.A. Santos, A.A. Coelho, Structurally tuned multiferroic state in BiFeO3-based compounds, Appl. Phys. A 111 (2012) 563-567.

DOI: 10.1007/s00339-012-7258-y

Google Scholar

[7] R.A.M. Gotardo, L.F. Cótica, I.A. Santos, E. Botero, D. Garcia, J.A. Eiras, Improved magnetic and ferroelectric properties of monoclinic structured 0. 8BiFeO3 - 0. 2BaTiO3 magnetoelectric ceramics, Scripta Mater. 61 (2009) 508-512.

DOI: 10.1016/j.scriptamat.2009.05.007

Google Scholar

[8] D.S.F. Viana, R.A.M. Gotardo, L.F. Cótica, I.A. Santos, D. Garcia, J.A. Eiras, M. OlzonDyonysio, S.D. Souza, A.A. Coelho, Ferroic investigations in LuFe2O4 multiferroic ceramics, J. Appl. Phys. 110 (2011) 034108-1 - 034108-5.

DOI: 10.1063/1.3622147

Google Scholar

[9] J. Rodriguez-Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Physica B 192 (1993) 55-69.

DOI: 10.1016/0921-4526(93)90108-i

Google Scholar

[10] B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S. -E. Park, D.E. Cox, G. Shirane, Tetragonal-tomonoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0. 52Ti0. 48O3, Phys. Rev. B 61 (2000) 8687-8695.

Google Scholar

[11] B. Noheda, D.E. Cox, G. Shirane, S. -E. Park, L.E. Cross, Z. Zhong, Phys. Rev. Lett., Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3, 86 (2001) 3891-3895.

Google Scholar

[12] G. Catalan, J.F. Scoot, Physics and Applications of Bismuth Ferrite, Adv. Mater. 21 (2009) 2463-2485.

DOI: 10.1002/adma.200802849

Google Scholar

[13] G.H. Haertling, Ferroelectric Ceramics: History and technology, J. Am. Ceram. Soc. 82 (1999) 797-818.

Google Scholar