Influence of Chondroitin Sulfate A on Zeta Potential, Aggregation and Sedimentation of Nano COM and Nano COD Crystallites

Article Preview

Abstract:

The influence of urinary macromolecule chondroitin sulfate A (C4S) on Zeta potential, aggregation and sedimentation of calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) nanocrystallites with a diameter of about 50 nm were investigated using nanoparticle size Zeta potential analyzer and transmission electron microscope. C4S could increase the absolute value of Zeta potential on surface of nanoCOM and nanoCOD crystallites by adsorbing on crystal surface, it led an increase of the electrostatic repulsion force between the crystallites, so the aggregation and sedimentation of these crystallites were inhibited, and the stability of the suspension of nanoCOM and nanoCOD was improved. In conclusion, C4S could inhibit the formation of CaOxa stones。

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-42

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] S. Farmanesh, S. Ramamoorthy, J. Chung, J. R. Asplin, P. Karande, J. D. Rimer, J. Amer. Chem. Soc., 136 (2014), 367–376.

DOI: 10.1021/ja410623q

Google Scholar

[2] J. -Y. He, S. -P. Deng, J. -M. Ouyang, IEEE Trans. Nanobiosci., 9 (2010), 156–163.

Google Scholar

[3] M. Tsujihata, K. Tsujikawa, N. Tei, K. Yoshimura & A. Okuyama, Int. J. Urol., 13 (2006), 197–201.

Google Scholar

[4] Y. M. Michelacci, R. Q. Glashan, N. Schor, Kidney Int., 36 (1989), 1022–1028.

Google Scholar

[5] W. G. Robertson, Nephron Physiol., 98 (2004), 21–30.

Google Scholar

[6] B. Finlayson, F. Reid, Invest. Urol., 15 (1978), 442–448.

Google Scholar

[7] D. Webber, A. L. Rodgers, E. D. Sturrock, Urol. Res., 35 (2007), 277–285.

Google Scholar

[8] O. Miyake, K. Yoshimura, M. Tsujihata, T. Yoshioka, T. Koide, S. Takahara, A. Okuyama, Urology, 53 (1999), 1229–1234.

DOI: 10.1016/s0090-4295(99)00004-7

Google Scholar

[9] S. J. Mizumoto, D. Fongmoon, K. Sugahara, Acta Biomater., 9 (2013), 8158–8168.

Google Scholar

[10] T. Mikami, H. Kitagawa, Biochim. Biophys. Acta, 1830 (2013), 4719–4733.

Google Scholar

[11] L. Tunik, H. Fueredi–Milhofer, N. Garti, Langmuir, 14 (1998), 3351–3355.

DOI: 10.1021/la9708041

Google Scholar

[12] V. Thongboonkerd, T. Semangoen, S. Chutipongtanate, Clin. Chim. Acta, 367 (2006), 120–131.

Google Scholar

[13] S. Kulaksizoglu, M. Sofikerim, C. Cevik, Int. J. Urol., 14 (2007), 214–218.

Google Scholar

[14] S. -P. Deng, J. -M. Ouyang, Coll. Surf. A, 257–258 (2005), 47–50.

Google Scholar

[15] M. Q. Ge, W. Y. Liang, J. Disper. Sci. Technol., 31 (2010), 1157–1162.

Google Scholar

[16] X. X. Sheng, M. D. Ward, J. A. Wesson, J. Am. Soc. Nephrol., 16 (2005), 1904–(1908).

Google Scholar

[17] J. M. Baumann, B. Affolter, U. Caprez, C. Clivaz, Z. Gluck, R. Weber, Urol. Int., 79 (2007), 267–272.

DOI: 10.1159/000107961

Google Scholar

[18] B. Hess, S. Jordi, L. Zipperle, E. Ettinger, R. Giovanoli, Nephrol. Dial. Transpl., 15 (2000), 366–374.

Google Scholar