Different Photoresponses for Positive and Negative Biases of CuPc/C60 Heterojunction Nanostructures

Article Preview

Abstract:

Photoresponse characteristic from efficient exciton dissociated heterojunction based on copper phthalocyanine (CuPc) and fullerene (C60) layers was observed the different spectrum responses under positive and negative biases. The nanostructures of CuPc and C60 thin films were fabricated between transparent indium tin oxide (ITO) and aluminum (Al) electrodes. The 100 nm thick of CuPc and C60 layers were deposited on patterned ITO glass substrates by thermal evaporation with quartz thickness monitor. Photoresponses of the fabricated devices were investigated by current measuring as a function of wavelength in range of 400 to 700 nm. Measured current in Al/C60/CuPc/ITO structure when applied negative voltage to ITO electrode is higher than that of positive voltage case. Under monochromatic light, the photoresponse characteristic of Al/C60/CuPc/ITO structure under negative bias shows dominate response current peak at around 450 nm and double peaks in range of 500-700 nm originated from C60 and CuPc layers, respectively. These two response characteristics can be described by the combination of responses from Al/C60/ITO and Al/CuPc/ITO structures. The response current characteristics of Al/C60/ITO and Al/CuPc/ITO structures also agree with the optical absorptions of C60 and CuPc layers, respectively. By applying positive bias to Al/C60/CuPc/ITO structure, the photoresponse characteristic has only one peak at about 450 nm that is similar to the response in Al/C60/ITO structure only. This indicates that under positive bias, the photocurrent only from C60 layer can be observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-68

Citation:

Online since:

May 2015

Export:

Price:

* - Corresponding Author

[1] I. Murtaza, I. Qazi, K.S. Karimov, CuPc/C60 heterojunction thin film optoelectronic devices, J. Semiconduct., 31 (2010) 064005.

DOI: 10.1088/1674-4926/31/6/064005

Google Scholar

[2] T. Osasa, S. Yamamoto, Y. Iwasaki, M. Matsumura, Photocarrier generation in organic thin-film solar cells with an organic heterojunction, Sol. Energy Mater. Sol. Cells, 90 (2006) 1519-1526.

DOI: 10.1016/j.solmat.2005.10.016

Google Scholar

[3] G. Zhang, W. Li, B. Chu, F. Yan, J. Zhu, Y. Chen, Very high open-circuit voltage ultraviolet photovoltaic diode with its application in optical encoder field, Appl. Phys. Lett., 96 (2010) 073301.

DOI: 10.1063/1.3318438

Google Scholar

[4] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett., 48 (1986) 183-185.

Google Scholar

[5] K. Hemant, K. Pankaj, C. Neeraj, B. Ramil, C. Suresh, S.C. Jain, K. Vikram, Effect of temperature on the performance of CuPc/C60 photovoltaic device, J. Phys. D Appl. Phys., 42 (2009) 015102.

Google Scholar

[6] I. Murtaza, I. Qazi, K.S. Karimov, CuPc/C 60 heterojunction thin film optoelectronic devices, J. Semicond., 31 (2010) 064005.

DOI: 10.1088/1674-4926/31/6/064005

Google Scholar

[7] T. Osasa, S. Yamamoto, Y. Iwasaki, M. Matsumura, Photocarrier generation in organic thin-film solar cells with an organic heterojunction, Sol. Energ. Mat. Sol. C., 90 (2006) 1519-1526.

DOI: 10.1016/j.solmat.2005.10.016

Google Scholar

[8] T. Morimune, H. Kajii, Y. Ohmori, O. Yutaka, High-speed organic photodetectors using heterostructure with phthalocyanine and perylene derivative, Jpn. Appl. Phys., 45 (2006) 546–549.

DOI: 10.1143/jjap.45.546

Google Scholar

[9] T. Benanti, D. Venkataraman, Organic solar cells: an overview focusing on active layer morphology, Photosynth. Res., 87 (2006) 73-81.

DOI: 10.1007/s11120-005-6397-9

Google Scholar

[10] J. Theerasak, O. Tanakorn, Microstructure and electrical characteristics of ITO/CuPc/TCNQ/Al and ITO/TCNQ/CuPc/Al heterojunctions. Adv. Mater. Res., 403 - 408 (2011) 5097- 5101.

DOI: 10.4028/www.scientific.net/amr.403-408.5097

Google Scholar

[11] A.A.M. Farag, Optical absorption studies of copper phthalocyanine thin films, Opt. Laser Tech., 39 (2007) 728-732.

DOI: 10.1016/j.optlastec.2006.03.011

Google Scholar

[12] S.S. Mali, D.S. Dalavi, P.N. Bhosale, C.A. Betty, A.K. Chauhan, P.S. Patil, Electro-optical properties of copper phthalocyanines (CuPc) vacuum deposited thin films, RSC Adv., 2 (2012) 2100-2104.

DOI: 10.1039/c2ra00670g

Google Scholar

[13] X. Mo, H. -Z. Chen, Y. Wang, M. -M. Shi, M. Wang, Fabrication and photoconductivity study of copper phthalocyanine/perylenecomposite with bulk heterojunctionsobtained by solution blending, J. Phys. Chem. B, 109 (2005) 7659-7663.

DOI: 10.1021/jp050391+

Google Scholar

[14] G.Z. Li, Photoconductivity of solid fullerene C60 film modified by laser irradiation, J. Mater. Sci., 38 (2003) 921-926.

Google Scholar

[15] V. Capozzi, G. Casamassima, G.F. Lorusso, A. Minafra, R. Piccolo, T. Trovato, A. Valentini, Optical spectra and photoluminescence of C60 thin films, Solid State Commun., 98 (1996) 853-858.

DOI: 10.1016/0038-1098(96)00060-9

Google Scholar

[16] N. Minami, S. Kazaoui, R. Ross, Electronic excited states in C60 thin film as revealed by spectroscopic measurements: luminescence excitation spectra and temperature dependence, Synthetic Met., 70 (1995) 1397-1400.

DOI: 10.1016/0379-6779(94)02894-5

Google Scholar

[17] M.D. Pirriera, et al., Optoelectronic properties of CuPc thin films deposited at different substrate temperatures, J. Phys. D Appl. Phys., 42 (2009) 145102.

DOI: 10.1088/0022-3727/42/14/145102

Google Scholar

[18] P. Gyoosoon, H. Ilsu, R. Ilhwan, Y. Sanggyu, Study on electronic absorption and surface morphology of double layer thin Films of phthalocyanines, Bull. Korean Chem. Soc., 32 (2011) 943-946.

Google Scholar

[19] K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly efficient organic devices based on electrically doped transport layers, Chem. Rev., 107 (2007) 1233-1271.

DOI: 10.1021/cr050156n

Google Scholar

[20] S. Rajaputra, S. Vallurupalli, V. Singh, Copper phthalocyanine based Schottky diode solar cells, J. Mater. Sci. Mater. Electron., 18 (2007) 1147-1150.

DOI: 10.1007/s10854-007-9152-5

Google Scholar

[21] K.P. Khrishnakumar, C.S. Menon, Determination of the thermal activation energy and grain size of iron phthalocyanine thin films, Mater. Lett., 48 (2001) 64-73.

DOI: 10.1016/s0167-577x(00)00281-0

Google Scholar

[22] A.K. Mahapatro, S. Ghosh, Schottky energy barrier and charge injection in metal/copper-phthalocyanine/metal structures, Appl. Phys. Lett., 80 (2002) 4840-4842.

DOI: 10.1063/1.1483388

Google Scholar

[23] A. Kumar, S. Ghosh, High rectification in metal-phthalocyanine based single layer devices, IEEE T. Electron. Dev., 48 (2001) 1911-(1914).

DOI: 10.1109/16.944176

Google Scholar

[24] T. Kietzke, Recent Advances in organic solar cells, Adv. Optoelectron., 2007 (2007) 40285.

Google Scholar

[25] G.G. Malliaras, J.R. Salem, P.J. Brock, C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes, Phys. Rev. B, 58 (1998) R13411-R13414.

DOI: 10.1103/physrevb.58.r13411

Google Scholar

[26] H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview, J. Mater. Res., 19 (2004) 1924-(1945).

Google Scholar