Biogenic Gold Nanoparticles and its Antibacterial Activities: Houttuynia Cordata Leaf Extract

Article Preview

Abstract:

Gold nanoparticles (AuNPs) can be prepared in a number of chemical techniques, which are not environmentally friendly. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. In this work, we describe an eco-friendly technique for green synthesis of AuNPs from AuCl4 solution using the Houttuynia cordata leaf extract as reducing agent. The AuNPs were characterized using UV-Visible spectroscopy, SEM, TEM, FTIR and AFM. The UV-Visible spectra indicate a strong plasma resonance that is located at 535 nm. The antibacterial activity of AuNPs was performed on various gram positive and gram negative bacteria. The AuNPs showed more inhibitory activity on gram negative than gram positive bacteria.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

392-397

Citation:

Online since:

October 2014

Export:

Price:

* - Corresponding Author

[1] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals, Chem. of Euro. J. 8 (2002) 28-35.

Google Scholar

[2] S.L. Smitha, K.G. Gopchandran, R.N. Nair, K.M. Nampoothiri, T.R. Ravindran, SERS and antibacterial active green synthesized gold nanoparticles, Plasmonics 7 (2012) 515-524.

DOI: 10.1007/s11468-012-9337-5

Google Scholar

[3] T.V.M. Sreekanth, P.C. Nagajyothi, K.D. Lee, Dioscorea batatas Rhizome-assisted Rapid Biogenic Synthesis of Silver and Gold Nanoparticles, Syn. and Rea. in Ino. metal-org and nano-metal chem. 42 (2012) 567-572.

DOI: 10.1080/15533174.2011.613886

Google Scholar

[4] A.A. Lazarides, K.L. Kelly, T.R. Jensen, G.C. Schatz, Optical properties of metal nanoparticles and nanoparticles aggregates important in biosensors, J. Mol. Struc. 529 (2000) 59-63.

DOI: 10.1016/s0166-1280(00)00532-7

Google Scholar

[5] I.H. El-Sayed, X. Huang M.A. El-Sayed, Selective laser photo-thermal therapy of opithelia using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett. 239 (2006) 129-135.

DOI: 10.1016/j.canlet.2005.07.035

Google Scholar

[6] P. Mukherjee, R. Bhattacharya, N. Bone, Y.K. Lee, C.R. Patra, S. Wang, L. Lu, C. Secreto, P.C. Banerjee, M.J. Yaszemski, N.E. Kay, D. Mukhopadhyay, Potentical therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enchancing apoptosis, J. Nanobioteh. 5 (2007).

DOI: 10.1186/1477-3155-5-4

Google Scholar

[7] M.L. Brongersma, V.M. Shalaev, The case for plasmonics, Science 328 (2010) 440-441.

Google Scholar

[8] X.L. Jiang, H.F. Cui, Different therapy for different types of ulcerative colitis in china, World J. Gastroenterol. 10 (2004) 1513-1520.

DOI: 10.3748/wjg.v10.i10.1513

Google Scholar

[9] K. Hayashi, M. Kamiya, N. Hiraoka, Y. Ikeshiro, Inhibitory activity of soyasaponin II on virus replication in vitro, Planta. Med. 63 (1997) 102-105.

DOI: 10.1055/s-2006-957622

Google Scholar

[10] J.S. Lee, I.S. Kim, J.H. Kim, J.S. Kim, D.H. Kim, C.Y. Yun, Suppressive effects of Houttuynia Thung (Saururaceae) extract on Th2 immune response, J. Ethnopharm. 117 (2008) 34-40.

DOI: 10.1016/j.jep.2008.01.013

Google Scholar

[11] Y.Y. Chen, J.F. Liu, C.M. Chen, P.Y. Chao, A study of the antixidative and antimutagenic effects of Houttuynia cordata thumb. Using an oxidized frying oil-fed model, J. Nutr. Sci. Vitaminol. 49 (2003) 327-333.

DOI: 10.3177/jnsv.49.327

Google Scholar

[12] C. Perez, M. Paul, P. Bazerque, Antibiotic assay by agar-well diffusion method, Acta. Biol. Med. Exp. 15 (1990) 113-115.

Google Scholar

[13] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Coll. Surf. B. Biointerf. 28 (2003) 313-318.

DOI: 10.1016/s0927-7765(02)00174-1

Google Scholar

[14] Afreen, V. Rathod, E. Ranganath, Synthesis of monodisperesed silver nanoparticles by Rhizopus stolonifer and its antibacterial activity against MDR strains of Pseudomonas Aeruginosa from burnt patients, Int. J. Env. Sci. 1 (2011) 1582-1592.

Google Scholar

[15] S. Swaminathan, S. Murugesan, S. Damodarkumar, R. Dhamotharan, S. Bhuvaneshwari, Synthesis and characterization of gold nanoparticles from Alga Acanthophora specifera (VAHL) boergesen, Int. J. Nano. Sci. Nanotech. 2 (2011) 85-94.

Google Scholar

[16] K.M. Kumar, B.K. Mandal, M. Sinha, V. Krishnakumar, Terminalia chebula mediated green and rapid synthesis of gold nanoparticles, Spectro. Acta. A. Mol. Biomol. Spectrosc. 86 (2012) 490-494.

DOI: 10.1016/j.saa.2011.11.001

Google Scholar

[17] N. Jayshree, P.C. Pauline, A. Kanchana, Biogenic synthesis by Sphearanthus amaranthoids; towards the efficient production of the biocompatible gold nanoparticles, Dig. J. Nanomat. Biostru. 7 (2012) 123-133.

Google Scholar

[18] N.R. Jana, Z.L. Wang, T.K. Sau , T. Pal, ssed-mediated growth method to prepare cubic copper nanoparticles, Current. Sci. 79 (2000) 1367-1370.

Google Scholar

[19] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 73 (2007) 1712-1720.

DOI: 10.1128/aem.02218-06

Google Scholar

[20] C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticles shape dependence, Anal. Chem. 77 (2005) 3261-3266.

DOI: 10.1021/ac048176x

Google Scholar