In Situ Electron Microscopy Studies on the Tensile Deformation Mechanisms in Aluminium 5083 Alloy

Article Preview

Abstract:

In this study tensile deformation mechanisms of aluminium alloy 5083 were investigated under observations made from SEM equipped with a tensile stage. Observations during tensile testing revealed a sequence of surface deformation events. These included micro-cracking of large intermetallic particles, decohesion of small intermetallic particles from the matrix producing microvoids and slip bands distribution. The fracture surface was characterised with closely spaced dimples, typical for aluminium alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-111

Citation:

Online since:

October 2014

Export:

Price:

* - Corresponding Author

[1] V. Songmene, R. Khettabi, I. Zaghbani, J. Kouam, A. Djebara, Machining and machinability of aluminum alloys, (2011).

DOI: 10.5772/14888

Google Scholar

[2] S.J. Pérez-Bergquist, G.T. Gray Iii, E.K. Cerreta, C.P. Trujillo, A. Pérez-Bergquist, The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039, Mater. Sci. Eng., A, 528 (2011) 8733-8741.

DOI: 10.1016/j.msea.2011.08.046

Google Scholar

[3] Y. Han, K. Ma, L. Li, W. Chen, H. Nagaumi, Study on microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content, Mater. Design., 39 (2012) 418-424.

DOI: 10.1016/j.matdes.2012.01.034

Google Scholar

[4] I.M. Snyman, Impulsive loading events and similarity scaling, Eng. Struct., 32 (2010) 886-896.

DOI: 10.1016/j.engstruct.2009.12.014

Google Scholar

[5] K. Ramesh, High Rates and Impact Experiments, in: W.N. Sharpe, Jr. (Ed. ) Springer Handbook of Experimental Solid Mechanics, Springer US, 2008, pp.929-960.

DOI: 10.1007/978-0-387-30877-7_33

Google Scholar

[6] P. Jena, B. Mishra, M. Rameshbabu, A. Babu, A. Singh, K. Sivakumar, T.B. Bhat, Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel, Int. J. Impact Eng., 37 (2010) 242-249.

DOI: 10.1016/j.ijimpeng.2009.09.003

Google Scholar

[7] C. Menzemer, T.S. Srivatsan, The quasi-static fracture behavior of aluminum alloy 5083, Mater. Lett., 38 (1999) 317-320.

DOI: 10.1016/s0167-577x(98)00175-x

Google Scholar

[8] N. Llorca-Isern, C. Luis-Perez, P. Gonzalez, L. Laborde, D. Patino, Analysis of structure and mechanical properties of AA 5083 aluminium alloy processed by ECAE, Rev. Adv. Mater. Sci, 10 (2005) 473-478.

Google Scholar

[9] K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G.S. Ferreira, Role of intermetallic phases in localized corrosion of AA5083, Electrochim. Acta, 52 (2007) 7651-7659.

DOI: 10.1016/j.electacta.2006.12.072

Google Scholar

[10] S. -L. Lee, S. -T. Wu, Identification of dispersoids in Al-Mg alloys containing Mn, Metall. Trans. A, 18 (1987) 1353-1357.

DOI: 10.1007/bf02646649

Google Scholar

[11] T. Kobayashi, Strength and fracture of aluminum alloys, Mater. Sci. Eng., A, 280 (2000) 8-16.

Google Scholar

[12] M.F. Horstemeyer, A.M. Gokhale, A void–crack nucleation model for ductile metals, International Journal of Solids and Structures, 36 (1999) 5029-5055.

DOI: 10.1016/s0020-7683(98)00239-x

Google Scholar

[13] M.T. Tucker, M.F. Horstemeyer, W.R. Whittington, K.N. Solanki, P.M. Gullett, The effect of varying strain rates and stress states on the plasticity, damage, and fracture of aluminum alloys, in: Mechanics of Materials, 2010, pp.895-907.

DOI: 10.1016/j.mechmat.2010.07.003

Google Scholar

[14] H. Halim, D.S. Wilkinson, M. Niewczas, The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy, Acta Mater., 55 (2007) 4151-4160.

DOI: 10.1016/j.actamat.2007.03.007

Google Scholar

[15] J. Kang, D.S. Wilkinson, M. Jain, J.D. Embury, A.J. Beaudoin, S. Kim, R. Mishira, A.K. Sachdev, On the sequence of inhomogeneous deformation processes occurring during tensile deformation of strip cast AA5754, Acta Mater., 54 (2006) 209-218.

DOI: 10.1016/j.actamat.2005.08.045

Google Scholar

[16] W.D. Callister, D.G. Rethwisch, Materials science and engineering: an introduction, (2007).

Google Scholar

[17] D.E. Kramer, M.F. Savage, L.E. Levine, AFM observations of slip band development in Al single crystals, Acta Mater., 53 (2005) 4655-4664.

DOI: 10.1016/j.actamat.2005.06.019

Google Scholar

[18] Z. Pakieła, W. Zieliński, K. Kurzydłowski, In-Situ Investigations of the Fracture Mechanisms at Various Length Scales, in, (2006).

Google Scholar

[19] S.D. Antolovich, R.W. Armstrong, Plastic strain localization in metals: origins and consequences, Progress in Materials Science, 59 (2014) 1-160.

DOI: 10.1016/j.pmatsci.2013.06.001

Google Scholar

[20] O. Hopperstad, T. Børvik, T. Berstad, O. Lademo, A. Benallal, A numerical study on the influence of the Portevin–Le Chatelier effect on necking in an aluminium alloy, Modell. Simul. Mater. Sci. Eng., 15 (2007) 747.

DOI: 10.1088/0965-0393/15/7/004

Google Scholar

[21] K. Spencer, S.F. Corbin, D.J. Lloyd, The influence of iron content on the plane strain fracture behaviour of AA 5754 Al–Mg sheet alloys, Mater. Sci. Eng., A, 325 (2002) 394-404.

DOI: 10.1016/s0921-5093(01)01481-2

Google Scholar

[22] E.L. Huskins, B. Cao, K.T. Ramesh, Strengthening mechanisms in an Al–Mg alloy, in: Mater. Sci. Eng., A, 2010, pp.1292-1298.

DOI: 10.1016/j.msea.2009.11.056

Google Scholar

[23] T. Masuda, T. Kobayashi, H. Toda, High strain rate deformation behavior of Al-Mg alloys, in: ICF10, Honolulu (USA) 2001, (2013).

Google Scholar

[24] B.M. Darras, F.H. Abed, S. Pervaiz, A. Abdu-Latif, Analysis of damage in 5083 aluminum alloy deformed at different strainrates, Mater. Sci. Eng., A, 568 (2013) 143-149.

DOI: 10.1016/j.msea.2013.01.039

Google Scholar

[25] R. Podor, J. Ravaux, H. -P. Brau, In situ experiments in the scanning electron microscope chamber, InTech, (2012).

DOI: 10.5772/36433

Google Scholar