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A study on the turbulent transport of an advective nature in the fluid plasma
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Advective nature of the electrostatic turbulent flux of plasma energy is studied numerically in a
nearly adiabatic state. Such a state is represented by the Hasegawa-Mima equation that is driven
by a noise that may model the destabilization due to the phase mismatch of the plasma density and
the electric potential. The noise is assumed to be Gaussian and not to be invariant under reflection
along a direction ŝ. It is found that the flux density induced by such noise is anisotropic: While it
is random along ŝ, it is not along the perpendicular direction ŝ⊥ and the flux is not diffusive. The
renormalized response may be approximated as advective with the velocity being proportional to

(kρs)
2 in the Fourier space ~k.

PACS numbers: 52.35.Ra

I. INTRODUCTION

Hasegawa-Mima (HM) model of the electrostatic fluctuations in the turbulent plasmas is a minimal foundation
for the dynamics of the nonlinear interactions of drift waves in the adiabatic state [1]. The emergence and the
subsequent role of the zonal flow is just one of many areas of the complicated plasma transport where the HM
dynamics successfully provide pedagogical explanations [2, 3]. For large scale fluctuations, however, the plasma is
not believed to be adiabatic. The so-called Terry-Horton (TH) equation supplements the HM model by adding ad
hoc non-adiabatic electron response as a way of making the perturbations linearly unstable due to inverse Landau
damping [4]. With such linear growth and artificial damping one may study the saturated states resulting from the
dual cascades of the energy and the enstrophy. The HM model may be extended to include the collisional aspect of
the drift waves by not neglecting the electron motion along the magnetic field line so that linearly unstable modes
are present self-consistently and that the energy is transferred to locally adjacent scale and is eventually dissipated
at small scale [5, 6]. Such collisional drift wave (CDW) description of the plasma may be shown to reduce to the
HM equation in the adiabatic limit. For a quantitative analysis of the CDW model numerical simulation is necessary.
However, the fluctuations of the CDW model that are close to the adiabatic state are very slow to reach a saturation
numerically.
Instead of dealing with the self-consistent CDW model in assessing the non-adiabatic effect on the transport one

may choose to approach conceptually similarly to the TH equation but more realistically by introducing a simulated
noise that represents energy pumping of the linearly unstable CDW’s. As CDW’s are not isotropic, such noise needs
to reflect the dependency on the directions. Specifically we assume that the noise is Gaussian with the spectrum of
power-law type that is widely used in the renormalization-group (RG) approach to turbulence [7, 8]. The noise is
assumed to be short-correlated in time compared with typical time scale of the plasma fluctuations as well as reflection
non-invariant or parity non-conserving (PNC) along a direction ŝ as a symmetry breaking element. It has been shown
through RG calculations that such PNC noise leads to the renormalized plasma response of advective nature. This
work is, thus, an extension of Ref. [8] by including numerical aspect to the analysis. The present work finds out that
the induced energy flux can be, indeed, advective. The direction, however, is not along ŝ, but along the perpendicular
direction to ŝ. In Sec. II the model and the results of the numerical simulation are described and we conclude in
Sec. III.

II. SIMULATION MODEL AND RESULTS

The forced HME for the electrostatic field ϕ in the Fourier space is

∂t
(

1 + k2
)

ϕk + ikyϕk − 1
2

∑

~k=~p+~q

M~k,~p,~q
ϕpϕq + νk4ϕk = fk, (1)
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FIG. 1: Real parts of typical turbulent energy flux R(k) with α = 0.5 is shown for two cases of uv pumping, δ = 0.5 and δ = 1.5
with the PNC direction along ŷ.

where the space scale is normalized to ρs and the time unit is ρs/vd with the electron diamagnetic drift speed vd,
M~k,~p,~q

= (ẑ · ~p× ~q)
(

p2 − q2
)

is the coupling between three modes, and ν is the viscosity. The Gaussian random

forcing fk(t) is delta-correlated in time and the power spectrum P of the noise in the d-dimensional Fourier space

P (~k) = Dk6−d−2δ
(

1 + iαŝ · k̂
)

. (2)

As the sum of P over all ~k is proportional to the input rate of the energy, W = (1/2)
∑

~k

(

1 + k2
)

|ϕk|2, the power-law
form of P , with a proper exponent δ, may be thought of as an approximation to a part of localized realistic power
spectrum. The coefficient α in Eq. (2) measure the strength of the PNC noise.
Eq. (1) is numerically integrated in time by advancing a time step ∆t with Runge-Kutta 2nd-order scheme starting

from the zero initial conditions. If ∆t is taken to be shorter than the auto-correlation time τ of the noise, the δ(t− t′)
part of the auto-correlation function of the noise is approximated as 1/∆t. The noise is numerically generated by
using two variables θ and ξ [9, 10]. They are uniformly distributed over (0, 2π) such that

〈

θ~k(t)θ~k′
(t+∆t)

〉

=
〈

ξ~k(t)ξ~k′
(t+∆t)

〉

= 0 (3)

and between different ~k’s they are independent of each other. However, θ~k(t) and ξ~k(t + ∆t) are assumed to be
correlated according to Eq. (2). The noise is, then, expressed as

f~k(t) = a~ke
iθ~k(t) + ib(~k)eiξ~k(t) (4)

and between two successive time steps the auto-correlation becomes

〈

f~k(t)f
∗
~k′
(t+∆t)

〉

=
{

|a~k|2 + |b~k|2 − ia~kb
∗
~k

〈

ei[θ~k(t)−ξ~k(t+∆t)]
〉

+ia∗~kb~k

〈

ei[ξ~k(t)−θ~k(t+∆t)]
〉}

δ~k~k′
(5)
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FIG. 2: Imaginary parts of the enstrophy turbulent flux 〈Q〉
rh

in the right half plane kx > 0 are plotted versus k for the cases
of α = 0,±0.3,±0.5 with δ = 0.5 and ŝ = ŷ.

It is convenient to choose θ~k(t) = ξ~k(t + ∆t). Then,
〈

ei[θ~k(t)−ξ~k(t+∆t)]
〉

= 1 and
〈

ei[ξ~k(t)−θ~k(t+∆t)]
〉

= 0. Thus, from
Eqs. (2) and (5), a~k and b~k are determined by

a2~k + b2~k − ia~kb~k = Dk6−d−δ(∆t)−1(1 + iαk̂ · ŝ). (6)

A case of uv forcing is simulated where the noise is applied in the scale that is smaller than ρ−1
s , that is kf < 1

in our unit of k being equal to ρ−1
s . We set L = 2π × 1024, N = 4096 and consider a uv forcing of δ = 0.5 with

amplitude f0 =
√
D = 0.5 in the range 1/1024 ≤ k ≤ 960/1024 with ŝ = ŷ. Additional parameters are the time step

∆t = 5 × 10−4 and the viscosity ν = 10−4. Hyper-viscose damping term of the form 4.4 × 102k16ϕk is introduced
in Eq. (1) that localizes uv forcing. The Eckman-like friction term 0.005ϕk is added in Eq. (1) that, by providing a
necessary damping, secures the saturation of the energy transfer toward smaller k [11].
Figs. 1 and 2 are collections of plots regarding the turbulent flux. In Fig. 1, the typical energy flux expressed in

terms of k = |~k|, R(k) = 1
2

k
∑

k′=0

∑

~k′=~p+~q

M~k′,~p,~q
ϕ−k′ϕpϕq with δ = 0.5 and α = 0.5 is shown. The negative sign of R

means that the energy flows toward smaller k. Roughly in the region 0.04 ≤ k ≤ 0.4 inertial range of constant energy
flux is seen to form. For a comparison, the flux of another uv forcing, δ = 1.5, is also plotted where the inertial range
is not as vivid as the former case. It is checked that the shape of R(k) is almost independent of the measure of the
PNC noise α as expected. The effects of the PNC noise α in the flux are observed in Fig. 2 where the imaginary part
of the turbulent enstrophy flux is plotted. The enstrophy flux density Q is obtained upon multiplying both sides of

Eq. (1) by ω−k. If it is summed over all ~k’s, its imaginary part cancels out. Therefore, In order to elucidate the role
of the imaginary part of the flux, partial sums are taken over a semi-annular disks of small width δk and shown in
Fig. 2: Qrh(k) in the right-half plane, kx ≥ 0, and Quh(k) in the upper-half plane, ky ≥ 0. The flux Qrh(k) is defined
as

Qrh(k) = ℑ 1
2

k
∑

k′=(k−δk)

∑

k′

x≥0

M~k′,~p,~q
k′

2
ϕ−k′ϕpϕq (7)
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FIG. 3: Imaginary parts of the enstrophy turbulent flux 〈Q〉
uh

in the upper half plane ky > 0 are plotted versus k for the cases
of α = 0 and ±0.5 with δ = 0.5 and ŝ = ŷ.

and Quh(k) correspondingly by the substitution of
∑

k′

x≥0

with
∑

k′

y≥0

. It is implied in Eq. (7) that ~k′ = ~p+ ~q in the sum.

Both Qrh(k) and Quh(k) are the enstrophy fluxes over the corresponding half annulus of width δk, which is 1/1024 in
this case, in the (kx, ky) plane. Shown in Fig. 2 are the mean values of 〈Q〉rh in terms of k for the cases of α = 0,±0.3
and ±0.5 being averaged over 200 sampled data that are taken at every 100∆t. Since for the isotropic forcing (α = 0)
〈Q〉rh is negligibly zero, 〈Q〉rh with α 6= 0 is purely induced by the PNC noise. The size of 〈Q〉rh is proportional to α
and it changes sign correspondingly to the sign of α.
The fluxes in the upper-half plane, ky ≥ 0, 〈Q〉uh are plotted in Fig. 3 for α = 0 and ±0.5. Upon comparison

with Fig. 2, it is observed that, for both the isotropic (α = 0) and the PNC forcing irrespective of the sign of α,
〈Q〉uh seems to be little different from one another. It is clear that such anisotropic nature of 〈Q〉uh is the result
of the nonlinear interactions between the drift waves and the PNC noise is not relevant to 〈Q〉uh [12]. Since the
Hasegawa-Mima dynamics has an intrinsic direction of ŷ due to the gradient of the plasma density along x̂, it is
understandable for isotropic forcing that Q has odd parity under the reflection along ŷ leading 〈Q〉rh to vanish while
leaving 〈Q〉uh finite. It may be concluded that the turbulent flux induced by the PNC noise is predominantly along
the perpendicular direction to ŝ, that is x̂ in the present setup.
Since 〈Q〉 in the left-hand plane 〈Q〉lh is equal to −〈Q〉rh, 〈Q〉 suggests advective nature along the direction of x̂,

perpendicular to the PNC direction. Upon anticipating 〈Q〉rh to be advective with the velocity x̂U , an advective flux

U
〈

kxω
2
〉

rh
, where ωk is the vorticity −k2ϕk, in the right-half plane is laid over 〈Q〉rh in Fig. 4. Scaling the advecting

velocity U with k2 seems to fit 〈Q〉rh to the advective flux. It is determined that, for α = −0.5, U = −40k2 and,
for α = 0.3, U = 24k2. One notes that U is proportional to α and that the dependence of U on k2 agrees with the
prediction of the RG and the strongly magnetized MHD plasmas.
In order to check the validity of the k2 dependence of the advecting veloctiy another case of uv forcing is considered

where kf > 1. The box size is L = 2π × 32, N = 1024, the hyper-viscosity is set to be 10−12 with the uv forcing
of δ = 0.5 in the region 1/32 ≤ k ≤ 240/32 and f0 = 3.6 × 10−2. Similar to the former case of kf < 1 an inertial
range is found to exist and the dependence of 〈Q〉’s on α is verified. In Fig. 5 〈Q〉rh for the cases of α = −0.5 and
0.3 are overlaid with Ukx

〈

|ωk|2
〉

where the advecting velocity is U = −0.025k2 and U = 0.015k2, respectively. One
may, thus, conclude that an effect of the PNC noise (2) on the convective nonlinear term in Eq. (1) may result in the
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FIG. 4: Flux density 〈Q〉
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in the right-half plane is compared with the advective flux density U
〈

kxω
2
〉

rh
where U is advecting

velocity along x̂. U is found to be proportional to k2.

advective response. With the PNC direction along y, regarding the transport of the second-order moment like the
energy and the enstrophy, one may approximate Eq. (1) as

∂t
(

1 + k2
)

ϕk + i
(

ky + Ukxk
2
)

ϕk + νk4ϕk ≈ fPC, (8)

where U ∝ k2 and fPC is the parity-conserving part of the noise.

III. CONCLUSION

Motivated by observations that the fluctuations in the magnetic fusion devices are predominantly anisotropic
as attested by the presence of various types of the drift waves, we set out to pedagogically study the advective
characteristics of the turbulent transport. In this paper we simulate the dynamics of the electrostatic fluctuations
in a magnetized plasma modeled by Hasegawa-Mima equation that is driven by an anisotropic noise. The noise is
not reflection-invariant along the direction ŝ. Such noise is simulated numerically by considering, for each mode, two
random variables that have time-delayed correlation to each other for a short time in a time-ordered fashion.
To be specific the electrostatic fluctuations are considered to be driven by the noise in the uv scale so that the

plasma energy cascades toward smaller scale. In the region of the Fourier space ~k where the energy flux is nearly
constant owing to the uv noise power it is found that the imaginary part of the turbulent flux 〈Q〉 is advective. With
the case of ŝ = ŷ, the advective flux 〈Q〉uh along the direction ŷ is arguably due to the strong interactions of the drift
waves based on the fact that 〈Q〉uh is mostly independent of the PNC noise. However, the advective flux 〈Q〉rh along
the direction x̂ arises because of the PNC noise. The advecting velocity U along x̂ is found to be proportional both
to (kρs)

2 and to the strength of the parity-non-conserving noise. Such dependence is shown to hold in a wide range
of k, including kρs < 1, as long as the plasma is forced from a uv region. The k2 dependence of U is in accordance
with the strongly magnetized MHD plasma forced by a PNC noise. As it is clear that the PNC noise may lead to
the non-diffusive transport in the plasma, it is desirable to look into the presence of PNC properties in the turbulent
plasmas. Work in such a direction is under way and results will be presented in another publication.
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