Skip to main content
Log in

Variation of energy level alignment in molecular junction elongation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The energy level alignment change in single-molecule junctions during junction elongation was investigated by using multi-IV measurements with a scanning tunneling micro-scope break-junction technique. We used 1,2-bis(4-pyridyl)ethylene molecule with Au electrodes, and observed a negative slope in the conductance trace during junction elongation. The trace was divided into three regions having high, middle, and low conductance in that order with increasing elongation. The values of the conductance and the thermopower obtained by multi-IV measurements with a temperature gradient were used to determine the energy level alignment changes of the molecule during junction elongation in each region, where the dominant orbital for transport is the lowest unoccupied molecular orbital. We found that the energy level alignment gets closer to the Au Fermi energy with decreasing conductance. These results thus provide quantitative information on energy level alignments in a metal-molecule interface during junction elongation and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Malen, P. Doak, K. Baheti, T. D. Tilley, R. A. Segalman and A. Majumdar, Nano Lett. 9, 1164 (2009).

    Article  ADS  Google Scholar 

  2. J. M. Beebe, V. B. Engelkes, L. L. Miller and C. D. Frisbie, J. Am. Chem. Soc. 124, 11268 (2002).

    Article  Google Scholar 

  3. M. Dell’Angela et al., L. Nano Lett. 10, 2470 (2010).

    Article  ADS  Google Scholar 

  4. C. D. Zangmeister et al., J. Phys. Chem. B 110, 17138 (2006).

    Article  Google Scholar 

  5. B. Xu, X. Xiao and N. J. Tao, J. Am. Chem. Soc. 125, 16164 (2003).

    Article  Google Scholar 

  6. B. Xu and N. J. Tao, Science 301, 1221 (2003).

    Article  ADS  Google Scholar 

  7. M. L. Perrin et al., Nat. Nano 8, 282 (2013).

    Article  Google Scholar 

  8. G. Heimel, L. Romaner, E. Zojer and J. L. Brédas, Nano Lett. 7, 932 (2007).

    Article  ADS  Google Scholar 

  9. G. Heimel, L. Romaner, J. L. Brédas and E. Zojer, Phys. Rev. Lett. 96, 196806 (2006).

    Article  ADS  Google Scholar 

  10. D. Cahen and A. Kahn, Adv. Mater. 15, 271 (2003).

    Article  Google Scholar 

  11. B. Kim, S. H. Choi, X. Y. Zhu and C. D. Frisbie, J. Am. Chem. Soc. 133, 19864 (2011).

    Article  Google Scholar 

  12. J. R. Widawsky, P. Darancet, J. B. Neaton and L. Venkataraman, Nano Lett. 12, 354 (2012).

    Article  ADS  Google Scholar 

  13. Y. S. Park et al., J. Am. Chem. Soc. 129, 15768 (2007).

    Article  Google Scholar 

  14. L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen and M. L. Steigerwald, Nano Lett. 6, 458 (2006).

    Article  ADS  Google Scholar 

  15. T. J. Kim, Phys. Chem. C 119, 12703 (2015).

    Article  Google Scholar 

  16. P. S. Yoo, H. Y. Jo and T. J. Kim, Phys. Chem. C 118, 29962 (2014).

    Article  Google Scholar 

  17. S. K. Yee, J. A. Malen, A. Majumdar and R. A. Segalman, Nano Lett. 11, 4089 (2011).

    Article  ADS  Google Scholar 

  18. P. Reddy, S. Y. Jang, R. A. Segalman and A. Majumdar, Science 315, 1568 (2007).

    Article  ADS  Google Scholar 

  19. T. Kim, P. Darancet, J. R. Widawsky, M. Kotiuga, S. Y. Quek, J. B. Neaton and L. Venkataraman, Nano Lett. 14, 794 (2014).

    Article  ADS  Google Scholar 

  20. S. V. Aradhya, M. Frei, M. S. Hybertsen and L. Venkataraman, Nat Mater 11, 872 (2012).

    Article  ADS  Google Scholar 

  21. M. Frei, S. V. Aradhya, M. Koentopp, M. S. Hybertsen and L. Venkataraman, Nano Lett. 11, (2011) 1518.

    Article  ADS  Google Scholar 

  22. M. Kamenetska et al., J. Am. Chem. Soc. 132, 6817 (2010).

    Article  Google Scholar 

  23. S. Y. Quek et al., Nat Nano 4, 230 (2009).

    Article  Google Scholar 

  24. M. Paulsson and S. Datta, Phys. Rev. B 67, 241403 (2003).

    Article  ADS  Google Scholar 

  25. R. Frisenda, M. L. Perrin, H. Valkenier, J. C. Hummelen and H. S. van der Zant, Physica Status Solidi (b) 250, 2431 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyeong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.W., Kim, T. Variation of energy level alignment in molecular junction elongation. Journal of the Korean Physical Society 69, 1673–1676 (2016). https://doi.org/10.3938/jkps.69.1673

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1673

Keywords

PACS numbers

Navigation