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Abstract. The last two decades have seen a surge in kinetic and macroscopic

models derived to investigate the multi-scale aspects of self-organised biological
aggregations. Because the individual-level details incorporated into the kinetic

models (e.g., individual speeds and turning rates) make them somewhat diffi-

cult to investigate, one is interested in transforming these models into simpler
macroscopic models, by using various scaling techniques that are imposed by

the biological assumptions of the models. However, not many studies invest-

igate how the dynamics of the initial models are preserved via these scalings.
Here, we consider two scaling approaches (parabolic and grazing collision lim-

its) that can be used to reduce a class of non-local 1D and 2D models for

biological aggregations to simpler models existent in the literature. Then, we
investigate how some of the spatio-temporal patterns exhibited by the original

kinetic models are preserved via these scalings. To this end, we focus on the
parabolic scaling for non-local 1D models and apply asymptotic preserving

numerical methods, which allow us to analyse changes in the patterns as the
scaling coefficient ε is varied from ε = 1 (for 1D transport models) to ε = 0
(for 1D parabolic models). We show that some patterns (describing stationary

aggregations) are preserved in the limit ε→ 0, while other patterns (describing

moving aggregations) are lost. To understand the loss of these patterns, we
construct bifurcation diagrams.

1. Introduction. Over the past 10-20 years a multitude of kinetic and macroscopic
models have been introduced to investigate the formation and movement of various
biological aggregations: from cells [5, 1] and bacteria [53] to flocks of birds, schools
of fish and even human aggregations (see, for example, [56, 18, 52, 19, 29, 8, 25] and
the references therein). The use of kinetic or macroscopic approaches is generally
dictated by the problem under investigation: (i) kinetic (transport) models focus on
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changes in the density distribution of individuals that have a certain spatial position,
speed and movement direction (or are in some activity state [7]); (ii) macroscopic
models focus on changes in the averaged total density of individuals [20, 31].

Generally, these kinetic and macroscopic models assume that individuals, parti-
cles, or cells can organise themselves in the absence of a leader. The factors that
lead to the formation of self-organised aggregations are the interactions among indi-
viduals as a result of various social forces: repulsion from nearby neighbours, attrac-
tion to far-away neighbours (or to roosting areas [23]) and alignment/orientation
with neighbours positioned at intermediate distances. These interaction forces are
usually assumed to act on different spatial ranges, depending on the communica-
tion mechanisms used by individuals; e.g., via acoustic long-range signals, or via
chemical/visual short-range signals. The non-locality of the attractive and align-
ment/orientation interactions is supported by radar tracking observations of flocks
of migratory birds, which can move with the same speed and in the same direction
despite the fact that individuals are 200-300 meters apart from each other [46]. For
the repulsive forces some models consider non-local effects generated by decaying
interactions with neighbours positioned further and further away [32], while other
models consider only local effects [55]. In the case of continuous mesoscopic and
macroscopic models, the non-local interactions are modelled by interaction kernels
(see Figure 1 for 2D and 1D kernels). The most common choices for these kernels
are Morse potential-type kernels [20, 18, 19, 22] (see Figure 1(b)) and Gaussian
kernels [33, 32, 31, 47] (see Figure 1(c)).

Due to their complex structure, kinetic models are difficult to investigate. Al-
though progress has been made in recent years, mainly regarding the existence and
stability of various types of solutions and the analytic asymptotic methods that al-
low transitions from kinetic (mesoscopic) to macroscopic models (see, for example,
[42, 51, 6, 18, 17, 29, 28, 11, 9, 39] and the references therein), it is still difficult
to study analytically and numerically the spatial and spatio-temporal aggregation
patterns exhibited by the kinetic models. For example, there are very few studies
that investigate the types of spatio-temporal patterns obtained with 2D and 3D kin-
etic models (see the review in [31]). Moreover, the presence of non-local interaction
terms increases the complexity of the models, leading to a larger variety of patterns
that are more difficult to be analysed. While numerical and analytical studies have
been conducted to investigate the patterns in 1D non-local models [32, 34, 14], such
an investigation is still difficult in the 2D non-local case (see [35]).

The first goal of this article is to start with a class of 1D and 2D non-local kinetic
models for self-organised aggregations that incorporate all three social interactions,
and to show, through different parabolic scaling approaches, that these models can
be reduced to known non-local parabolic models for swarming; see Figure 2 for a
diagram illustrating this approach. For the 1D case, similar analytical scalings have
been done in the context of bacterial chemotaxis [54] and for the kinetic model (1)
for individuals moving along a line [30].

The next aim is to investigate the numerical preservation of patterns between the
mesoscopic and macroscopic scales. We use asymptotic preserving numerical meth-
ods [44, 45, 21, 24], to obtain a better understanding of what happens with the 1D
patterns via the parabolic scaling. With the help of these methods, we investigate
numerically the preservation of stationary aggregations (that arise via steady-state
bifurcations) and moving aggregations (that arise via Hopf bifurcations), as the
scaling parameter ε is varied from large positive values (ε = 1) corresponding to
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Figure 1. 2D and 1D spatial kernels for social interactions. (a) 2D: Attract-
ive (Ka), repulsive (Kr) and alignment (Kal) kernels described by equation

(21); (b) 1D: Morse-type kernels: Kr,a(x) = e−|x|/sr,a . (c) 1D: Translated

Gaussian kernels Kj as defined in (3) with j = r, al, a.

the kinetic models to zero values corresponding to the limiting parabolic models.
To visualise the transitions between different patterns as ε → 0, we construct bi-
furcation diagrams for the amplitude of the solutions. For the 2D kinetic models,
we focus on two analytical scalings that lead to two different nonlocal parabolic
models. Our final target is to show the reader that by considering such scaling
approaches, we may lose certain aspects of the model dynamics - as emphasised by
the numerical simulations in the 1D case.
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1D FokkerïPlank
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Figure 2. Schematic diagram of the scaling and reductionist approach taken here.

The article is structured as follows. Section 2 contains a detailed description of
the 1D non-local models for animal aggregations, followed by the parabolic scaling
of these models. We also investigate analytically the steady states of the kinetic and
corresponding parabolic models. Section 3 contains a description of the 2D non-
local models, followed by a parabolic limit and a “grazing collision” limit, which
lead to different types of macroscopic models of parabolic type. Section 4 focuses
on asymptotic preserving methods for 1D models, and shows the spatial and spatio-
temporal patterns obtained with the parabolic and kinetic models, for some specific
parameter values. Here, we come back to the steady states of the 1D kinetic and
parabolic models, and investigate them numerically. We conclude in Section 5 with
a summary and discussion of the results.
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2. Description of 1D models. The following one-dimensional model was intro-
duced in [33, 32] to describe the movement of the densities of left-moving (u−) and
right-moving (u+) individuals that interact with conspecifics via social interactions:

∂u+

∂t
+ γ

∂u+

∂x
= −u+λ+[u+, u−] + u−λ−[u+, u−], (1a)

∂u−

∂t
− γ ∂u

−

∂x
= u+λ+[u+, u−]− u−λ−[u+, u−], (1b)

u±(x, 0) = u±0 (x). (1c)

Here γ is the constant speed and λ+ (λ−) is the rate at which right-moving (left-
moving) individuals turn left (right). Since the rates λ± are related to the probab-
ility of turning (see the derivation of model (1) in [31]), they are positive functions
defined as:

λ±[u+, u−] =λ1 + λ2f(yN [u+, u−]) + λ3f(y±D[u+, u−]) (2)

=λ1 + λ3

(
λ0

2f(yN [u+, u−]) + f(y±D[u+, u−])
)
,

where we denote by u = u+ + u− the total population density. In this paper, we
generalise the turning rates in [33, 32, 31] and assume that:

• individuals can turn randomly at a constant rate approximated by λ1 [33];
• individuals can turn randomly in response to the perception of individuals

inside any of the repulsive/attractive/alignment ranges (and independent of
the movement direction of their neighbours). These non-directed interactions
with neighbours are described by the term yN [u+, u−] with turning rate λ2.

• individuals can turn in response to interactions with neighbours positioned
within the repulsive (r), attractive (a) and alignment (al) zones, respectively
(see Figure 1) [33]. This turning is directed towards or away from neighbours,
depending on the type of interaction (attractive or repulsive). For alignment
interactions, individuals turn to move in the same direction as their neigh-
bours. The non-local directed interactions with neighbours are described by
terms y±D[u+, u−] with turning rate λ3.

If λ3 6= 0, we denote by λ0
2 the quotient of the turning rates, λ2/λ3. This choice

of notation is motivated by the corresponding 2D model (Section 3), the connection
between the 1D model (1) and the 2D model (18) will be made clearer in Remarks
3, 4, 5 and 6. The turning function f(·) is a non-negative, increasing, bounded
functional of the interactions with neighbours. An example of such function is
f(Y ) = 0.5 + 0.5 tanh(Y − y0) (see [32]), where y0 is chosen such that when Y = 0
(i.e., no neighbours around), then f(0) ≈ 0 and the turning is mainly random.

To model the long-distance social interactions that lead to turning behaviours,
we define the interaction kernels in 1D, see Figure 1, as decreasing functions of the
distance between the reference position x (of the population density) and the mid
of the interaction ranges sj , j = r, al, a,

Kj(x) =
1√

2πm2
j

e−(x−sj)2/(2m2
j ), (3)

for x > 0 and zero otherwise, with j = r, al, a denoting short-range repulsion (Kr),
medium-range alignment (Kal) and long-range attraction (Ka) interaction kernels.
Here, mj = sj/8 controls the width of the interaction range j.
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For the non-directed density-dependent turning we define the turning kernel,
KN (x) = K̂N (x) + K̂N (−x) with K̂N = qrKr + qalKal + qaKa obtained by super-
imposing the kernels Kj , j = r, al, a. Here qr, qal and qa represent the magnitudes of
the repulsive, alignment and attractive social interactions. Note that in [32], λ0

2 = 0
and the density-dependent non-directed turning term does not exist. However, in
2D, this term appears naturally when we incorporate random turning behaviour (as
discussed in Section 3). With these notations we may define

yN [u] = KN ∗ u, with u = u+ + u−,

for the non-directed turning mechanisms. We assume here that individuals turn
randomly whenever they perceive other neighbours around (within the repulsive,
alignment and attractive ranges).

For the directed density-dependent turning, we define

y±D[u+, u−] = y±r [u+, u−]− y±a [u+, u−] + y±al[u
+, u−]. (4)

Here, y±j [u+, u−], j = r, al, a, describe the directed turning in response to neighbours

within the repulsive (r), alignment (al) and attractive (a) social ranges (as in [33]).
As we will explain shortly, the direction of the turning will be given by incorporating
movement direction towards or away conspecifics. For this reason, y±a and y±r enter
equation (4) with opposite signs.

The density-dependent turnings depend greatly on how individuals communicate
with each other, namely whether they can emit (perceive) signals to (from) all or
some of their neighbours. Two particular situations, described by models called M2
and M4 as in [32] (see Figure 3) are considered:

• Model M2: Individuals communicate via omni-directional communication sig-
nals, and thus they can perceive all their neighbours positioned around them
within all social interaction ranges. For instance, the majority of mammals
communicate via a combination of visual, chemical and auditory signals, which
allows them to receive/send information from/to all their neighbours. With
this assumption (see Figure 3(a)), the terms y±r,a,al are defined as follows:

y±r,a[u+, u−] = qr,a

∫ ∞
0

Kr,a(s)
(
u(x± s)− u(x∓ s)

)
ds, (5a)

y±al[u
+, u−] = qal

∫ ∞
0

Kal(s)
(
u∓(x∓ s) + u∓(x± s) (5b)

−u±(x∓ s)− u±(x± s)
)
ds.

Here, qj describe the magnitudes of the social interactions associated to the
interaction kernels defined in (3). To understand the effect of these terms on
the turning rates, let us focus on y+

r , for example. If u(x+s) > u(x−s), then
y+
r enters λ+ with positive sign, suggesting a higher likelihood of turning,

to avoid collision with neighbours ahead at x + s. If, on the other hand,
u(x + s) < u(x − s), then y+

r enters λ+ with a negative sign, suggesting a
lower likelihood of turning. In this case, the individuals at x will keep moving
in the same direction, to avoid collision with neighbours behind at x−s. Note
that the directionality of neighbours influences only the alignment interactions
(the attractive and repulsive interactions being defined in terms of the total
density u). Also, for this particular model, the random density-dependent
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terms are given by

yN [u] =

∫ ∞
0

K̂N (s)
(
u(x+ s) + u(x− s))ds. (6)

• Model M4: Individuals communicate via uni-directional communication sig-
nals, and thus they can perceive only those neighbours moving towards them.
For example, birds communicate via directional sound signals, and to ensure
an effective transmission of their signals they orient themselves towards their
targeted receivers [12]. With this assumption (see Figure 3(b)), the terms
y±r,a,al are defined as follows:

y±r,a,al[u
+, u−] = qr,a,al

∫ ∞
0

Kr,a,al(s)
(
u∓(x± s)− u±(x∓ s)

)
ds. (7)

Here, the directionality of neighbours influences all three social interactions.
Moreover, for this model, the random density-dependent terms are given by

yN [u+, u−] =

∫ ∞
0

K̂N (s)
(
u−(x+ s) + u+(x− s))ds. (8)

In this equation, we assume that individuals turn randomly in response to
u− and u+ individuals (i.e., in (8) we add all perceived individuals; this is
in contrast to equation (7), where we subtract individuals positioned ahead
from individuals positioned behind, to impose directionality in the turning
behaviour). Note that in (8), yN does not depend anymore on u = u+ + u−

(as in (6)), since the individuals at x cannot perceive all their neighbours at
x± s.

x+sxïs

xïs x x+s xïs

x

x x+s

xxïs x+s

+
u
u

u
u+ + u

(a) model M2: (b) model M4:

u+ u+

u
+u u

u
uuu++u

u

Figure 3. Diagram describing the mechanisms through which a reference
individual positioned at x (right-moving – top; left-moving – bottom) perceives
its neighbours positioned at x − s and x + s. The reference individual can

perceive (a) all its neighbours (model M2 in [32]); (b) only its neighbours
moving towards it (model M4 in [32]).

We focus on these two particular models because: (i) the model (1)+(2)+(5)+(6)
assuming λ1 = 0 has been generalised to 2D; (ii) the model (1)+(2)+(7)+(8) as-
suming λ2 = 0 has been investigated analytically and numerically, and showed that
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it can exhibit Hopf bifurcations (even when qal = 0), which give rise to spatio-
temporal patterns such as rotating waves and modulated rotating waves [14]. In
contrast, model (1)+(2)+(5)+(6) with λ2 = 0 does not seem to exhibit rotating
waves when qal = 0, see [32].

To complete the description of the model, we need to specify the domain size
and the boundary conditions. Throughout most of this article, we will consider
an infinite domain. However, for the purpose of numerical simulations, in Sections
2.2 and 4 we will consider a finite domain of length L (i.e., [0, L]) with periodic
boundary conditions: u+(L, t) = u+(0, t), u−(0, t) = u−(L, t). This assumption
will also require wrap-around conditions for the kernels describing the nonlocal
social interactions, see Section 4. For large L, this assumption approximates the
dynamics on an infinite domain.

In the following, we show how this hyperbolic 2-velocity model can be reduced
to a parabolic equation by considering suitable scalings, which depend on the bio-
logical phenomena and biological assumptions. Of course, to be useful in practice,
these parameters have to be calibrated and adapted to particular species as in
[40, 41]. The scaling arguments are classically obtained by writing a dimensionless
formulation of the problem. We refer to [54] in bacterial chemotaxis and [2] in semi-
conductor modelling for a detailed description. After this dimensionless rescaling,
we typically end up with two different time scales whose balance determines our
small parameter: the drift time and the diffusion time.

We start in Subsection 2.1 with a parabolic scaling, which describes the situation
where the drift time of a population is much smaller than its diffusion time. To this
end, we discuss two separate cases (i.e., social interactions described by nonlinear
or linear functions f(y) in (2)), which lead to two different parabolic equations.

2.1. Parabolic limit for non-linear interactions. Next, we focus only on model
M2 (i.e., equations (1)+(2)+(5)+(6)), since the results for model M4 are similar.
The scaling argument applied in [42] transforms the hyperbolic system (1) into a
parabolic equation. One can scale the space and time variables (x = x∗/ε, t = t∗/ε2,
with ε� 1), or can scale the speed (γ) and the turning rates (λ1,2,3). In both cases,

we consider the rescaled interaction kernels K∗j (x∗) = 1
εKj(

x∗

ε ) in the expressions

for y±j , j = r, al, a. Here, we scale the time and space variables to be consistent with
the approach in Section 3.1. As mentioned above, the scaling parameter ε depends
on the biological problem modelled. For example, in [42] the authors connect ε
to the ratio of the drift (τdrift) and diffusion (τdiff ) times observed in bacteria
such as E. coli, where τdrift ≈ 100 seconds and τdiff ≈ 104 seconds, and thus
ε ≈ O(10−2). Similar scaling arguments are used in [54, Appendix] to analyse the
ability of parabolic scalings to describe travelling pulses.

To perform the scaling, let us re-write model (1) in terms of the total density
u(x, t) and the flux v(x, t) = γ(u+(x, t)− u−(x, t)) of individuals (see also [42, 43]):

ε2 ∂u

∂t
+ ε

∂v

∂x
= 0, (9a)

ε2 ∂v

∂t
+ εγ2 ∂u

∂x
= γu

(
λ−[u, v]− λ+[u, v]

)
− v
(
λ+[u, v] + λ−[u, v]

)
, (9b)

with initial conditions u(x, 0) = u0(x), v(x, 0) = v0(x). For clarity, here we dropped
the “∗” from the rescaled space (x∗) and time (t∗) variables. In addition, we assume
that individuals have a reduced perception of the surrounding neighbours for small
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values of ε, [30]:

fε

(
y±D[u, v]

)
= εf

(
y±D
[
u,

∫
x∗
ε

ε
∂u

∂t∗
])
, fε

(
yN [u]

)
= εf

(
yN [u]

)
, (10)

where f enters the turning functions λ± (2):

λ+[·] + λ−[·] = 2λ1 + 2λ2 εf(yN [·]) + ε λ3

(
f(y+

D[·]) + f(y−D[·])
)
,

λ−[·]− λ+[·] = λ3ε
(
f(y−D[·])− f(y+

D[·])
)
.

By eliminating v = ε
∫
x
∂u
∂t from equations (9), and taking the limit ε → 0, we

obtain the following parabolic equation

∂u

∂t
=
γ2

2λ1

∂

∂x

(
∂u

∂x

)
− λ3γ

2λ1

∂

∂x

((
f(y−D[u])− f(y+

D[u])
)
u
)
. (11)

We note here that the non-local terms f(y±D[u]) now depend only on the repulsive
and attractive interactions. The reason for this is that the alignment interactions
are defined in terms of u± = (u± 1

γ v)/2 = 0.5(u± 1
γ

∫
x/ε

ε2∂u/∂t). As ε → 0, the

u terms in (5) cancel out, and the integrals approach zero. Equation (11) can be
re-written as

∂u

∂t
=

∂

∂x

(
D0

∂u

∂x

)
− ∂

∂x

(
B0 uV (u)

)
, (12)

with diffusion rate D0 = γ2/(2λ1) and drift rate B0 = λ3γ/(2λ1). The velocity
V (u) depends on the communication mechanism incorporated. For example, for
model M2 we have y±D[u] = ±K ∗ u, and so the velocity is given by

V [u] = f
(
−K ∗ u

)
− f

(
K ∗ u

)
where we define

K ∗ u = K̄+ ∗ u− K̄− ∗ u, K̄± ∗ u =

∫ ∞
0

K̄(s)u(x± s)ds,

K̄ = qrKr − qaKa. (13)

For model M4, we have y±D[u] = ±0.5K ∗ u, and so the velocity is quite similar:
V [u] = f

(
−0.5K ∗u

)
−f
(
0.5K ∗u

)
, the factor 0.5 appearing from u± = 0.5(u± 1

γ v).

Remark 1. We observe that the random density-dependent turning f(yN [u]) does
not appear in this parabolic limit. This is the result of the scaling assumptions (10).

Remark 2. Here, the turning functions f(·) were chosen to be bounded, since in-
dividuals cannot turn infinitely fast when subject to very strong interactions with
neighbours [32, 34]. However, for simplicity, many models consider linear func-
tions: f(z) = z (see, for example, [47, 48, 35]). The choice of having bounded
or non-bounded turning functions f(·) has further implications on the models. In
particular, for linear functions, the argument y±D = y±r − y±a + y±al can be either
positive or negative (depending on the magnitudes of the social interactions), with
y+
D = −y−D. For very small constant and non-directional turning rates (λ1, λ2 ≈ 0),

this can lead to λ+ < 0 and λ− > 0, or vice versa. Now the u+λ+ terms add to the
u−λ− terms, causing both u+ and u− populations to decide very fast to move in
the same direction (in fact, one of the populations is reinforced to keep its moving
direction). This is different from the case with bounded turning functions, where
if y+

D = −y−D � 0, then 0 < λ+ ≈ λ1 + λ2f (yN [u+, u−]) < λ−. So if λ1, λ2 ≈ 0,
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then u+λ+ ≈ 0 and hence population u+ is not reinforced to keep its movement
direction.

Because the 2D kinetic model that we will investigate in Section 3 assumes f to
be a linear function, with a very weak directed turning behaviour (ελ3), we now
consider the case f(yN [u]) = yN [u] = KN ∗ u and f(y±D[u]) = εy±D[u], and so the
turning rates can be written as

λ±[u+, u−] = λ1 + λ2K
N ∗ u+ ε λ3y

±
D[u]. (14)

By taking the limit ε → 0 in (9), we obtain the following parabolic equation with
density-dependent coefficients:

∂u

∂t
=

∂

∂x

(
D[u]

∂u

∂x

)
− ∂

∂x

(
B[u]u

(
y−D[u]− y+

D[u]
))
, (15a)

D[u] =
γ2

2(λ1 + λ2KN ∗ u)
and B[u] =

λ3γ

2(λ1 + λ2KN ∗ u)
. (15b)

This expression is similar to the asymptotic parabolic equation (30) for the 2D
model. We will return to this aspect in Section 3.1.

2.2. The preservation of steady states and their stability as ε → 0. The
spatially homogeneous steady states describe the situation where individuals are
evenly spread over the whole domain. In the following we investigate how these
steady states and their linear stability are preserved in the parabolic limit. To this
end, we focus on the more general case of non-linear social interactions (the case
with linear interactions is similar). For simplicity we assume here that λ2 = 0
and qal = 0. To calculate these spatially homogeneous states we need to define

A :=
∫ L

0
(u+ + u−)dx, the total population density. For simplicity, throughout this

paper we assume that A = 2; similar results can be obtained for different values of
A.

Figure 4(a) shows the number and magnitude of the steady states u∗ displayed by
(9)-(10) with communication mechanism M4, for different values of ε, as one varies
the difference in the magnitude of the repulsive and attractive social interactions,
qr − qa. For medium ε, the model can display up to 5 different steady states: one
“unpolarised” state (u+, u−) = (u∗, u∗) = (A/2, A/2) (where half of the individuals
are facing left and half are facing right), and two or four “polarised” states (u∗, A−
u∗), (A− u∗, u∗) characterised by u∗ < A/2 or u∗ > A/2. Two of these “polarised”
states exist only in a very narrow parameter range: e.g., for ε = 1, they exist when
qr − qa ∈ (2, 3.7). The other two “polarised” states exist for any qr − qa > 2. For a
calculation of the threshold values of qr−qa that ensure the existence of 3 or 5 steady
states see [33]. As ε decreases, the magnitude of the polarised states decreases (i.e.,
the differences between the number of individuals facing right and those facing left
are decreasing). Moreover, for small ε, these polarised states appear only when
repulsion becomes much stronger than attraction (i.e., qr − qa � 10). When ε = 0
there is only one steady state u∗ = A/2. Since this state exists for all ε ≥ 0, from
now on we will focus our attention only on it. Note that for qal = 0 and for the
communication mechanism M2 (not shown here), the nonlocal attractive-repulsive
terms vanish, and there is only one steady state, u∗ = A/2 = 1, which does not
depend on ε.

Models (1) and (9) do exhibit a large variety of local bifurcations: codimension-
1 Steady-state and Hopf bifurcations [34] as well as codimension-2 Hopf/Hopf,
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Figure 4. (a) Spatially homogeneous steady states u∗ for model
(9) with communication signals (7) and (8) (communication mech-
anism M4), for different values of ε. The small inset figure shows
the 5 possible steady states occurring for ε = 1 and qr−qa ∈ (2, 3.7)
(see the black continuous curve); (b) Dispersion relation σ(kj) for
M4 (given by (16)), showing the stability of the spatially homo-
geneous steady state u∗ = A/2, for different values of ε; (c) Dis-
persion relation σ(kj) for M2, for the stability of the spatially ho-
mogeneous steady state u∗ = A/2, for different values of ε. The
continuous curves describe Re σ(kj), while the dotted curves de-
scribe the Im σ(kj). The small diamond-shaped points show the
discrete wavenumbers kj , j = 1, ..., 7, with kj = 2πj/L (and thus
kj ∈ (0, 5) for j = 1, .., 7 and L = 10). The parameter values are:
(b)qa = 1.545, qr = 2.779; (c) qa = 1.5, qr = 0.93. The rest of
parameters are: qal = 0, λ1 = 0.2, λ2 = 0, λ3 = 0.9, A = 2.

Hopf/Steady-state and Steady-state/Steady-state bifurcations [14]. Next we fo-
cus on the parameter region where two such bifurcations can occur. We choose a
Hopf/steady-state bifurcation for M4 (Figure 4(b)) and a steady-state bifurcation
for M2 (Figure 4(c)), and investigate what happens when ε → 0. To identify the
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parameter regions where these bifurcations occur, we consider a finite domain of
length L, and investigate the growth of small perturbations of spatially homogen-
eous solutions. We assume u± ∝ u∗ + a±exp(σt+ ikjx), with kj = 2πj/L, j ∈ N+,
the discrete wave-numbers, and |a±| � 1. We substitute these solutions into the
linearised system (9), and by imposing that the determinant of this system is zero,
we obtain the following dispersion relation, which connects σ (the growth/decay of
the perturbations) with the wave-numbers kj :

ε2σ2 + σ(2Lε1 −Rε2Re(K̂+)) + γ2k2
j − γkjR2Im(K̂+) = 0, (16)

where Lε1 = λ1 + ελ3f(0), Rε2 = 2εu∗λ3f
′(0), and K̂+ = Re(K̂+) + iIm(K̂+)

the Fourier transforms of K̄+ ∗ u described in equations (13). Note that the wave
numbers kj that become unstable (i.e., for which Re(σ(kj)) > 0) determine, at least
for a short time, the number of “peaks” j that emerge in the spatial distribution of
the density.

Figure 4(b) shows the stability of the spatially homogeneous steady state u∗ =
A/2, for model M4, as given by the dispersion relation (16). Even if the wave-
numbers kj are discrete (see the diamond-shaped points on the x-axis of Figure
4(b)), we plot σ(kj), j > 0 as a continuous function of kj for clarity. To discuss
what happens with a Hopf bifurcation as ε → 0, we focus in Figure 4(b) on a
parameter space where such a bifurcation occurs (i.e., where Re(σ(kj)) = 0 in
(16)): qa = 1.545, qr = 2.779, λ1 = 0.2, λ2 = 0, λ3 = 0.9 and ε = 1 (see also
[15]). For these parameter values, three modes become unstable at the same time:
a steady-state mode k1 (Im(σ(k1)) = 0; associated with stationary patterns with 1
peak) and two Hopf modes k4 and k5 (Im(σ(k4,5)) > 0; associated with travelling
patterns with 4 or 5 peaks). As ε → 0, the steady-state mode persists while the
Hopf modes disappear (i.e., 0 < Re(σ(k1)) � 1 and Re(σ(k4,5)) < 0; see Figure
4(b).) This can be observed also from equation (16): as ε → 0, we have σ ∈ R.
A similar investigation of the local stability of the spatially homogeneous steady
states associated with the non-local parabolic equation (12) shows that this equation
cannot have complex eigenvalues (i.e., Im(σ(kj)) = 0 for all j > 0), and thus cannot
exhibit local Hopf bifurcations [16].

Figure 4(c) shows the stability of the spatially homogeneous steady state u∗ =
A/2, for model M2, as given by the dispersion relation σ(kj):

ε2σ2 + σ(2Lε1) + γ2k2
j − 2γkjR2Im(K̂+) = 0. (17)

For qa = 1.5, qr = 0.93, λ1 = 0.2, λ2 = 0, λ3 = 0.9 and ε = 1, model M2 exhibits
a steady-state bifurcation, i.e., Re(σ(kj)) = Im(σ(kj)) = 0 in (17). In particular,
two steady-state modes are unstable at the same time: k1 and k2 (both associated
with stationary patterns). As ε → 0, the two modes remain unstable. Hence, we
expect that the spatial patterns generated by these modes will persist as ε→ 0. We
will return to this aspect in Section 4.4, when we will investigate numerically the
mechanisms that lead to the disappearance of the Hopf modes and the persistence
of the steady-state modes, as ε→ 0.

3. Description of 2D models. An attempt to generalise a specific case of the
1D model (1)+(2)+(5)+(6) to two dimensions was made by Fetecau [35]. The
Boltzman-type model described in [35] incorporates the non-local social interactions
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The 2D equivalent of model M2 

θ

Figure 5. Caricature description of the M2 mechanism in 2D
(where individuals can perceive all their neighbours within a cer-
tain interaction range). We assume that a reference individual is
positioned at x = (x, y) and moves in direction φ. Its neighbours
are at various spatial positions x + s within a certain interaction
range (e.g., alignment range). The interaction ranges are described
by the 2D kernels (21); see also Figure 1(a).

in the reorientation terms:

∂u

∂t
+ γeφ · ∇xu = −λ(x, φ)u+

∫ π

−π
T (x, φ′, φ)u(x, φ′, t)dφ′. (18)

Here, u(x, φ, t) is the total population density of individuals located at x = (x, y),
moving at a constant speed γ > 0 in direction φ. The term eφ = (cos(φ), sin(φ))
gives the movement direction of individuals. The reorientation terms λ(x, φ) and
T (x, φ′, φ) depend on the non-local interactions with neighbours, which can be
positioned in the repulsive, attractive, and alignment ranges depicted in Fig. 1(a).
Thus, these terms have three components each, corresponding to the three social
interactions:

T (x, φ′, φ) = Tal(x, φ
′, φ) + Ta(x, φ′, φ) + Tr(x, φ

′, φ).

In contrast to the model in [35], here we assume that the reorientation terms

λj(x, φ
′) =

∫ π

−π
Tj(x, φ

′, φ)dφ, j = r, a, al

have both a constant and a density-dependent component:

T al(x, φ
′, φ) =

ηal
2π

+ (19a)

λ3 qal

∫ π

−π

∫
R2

Kd
al(x− s)Ko

al(θ, φ
′)ωal(φ

′ − φ, φ′ − θ)u(s, θ, t)dsdθ,

T r,a(x, φ′, φ) =
ηr,a
2π

+ (19b)

λ3 qr,a

∫ π

−π

∫
R2

Kd
r,a(x− s)Ko

r,a(s,x, φ′)ωr,a(φ′ − φ, φ′ − ψ)u(s, θ, t)dsdθ.
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Therefore, the turning rate λ(x, φ) = λal(x, φ) + λa(x, φ) + λr(x, φ) is defined by

λ = λ1 + λ3λ̄[u(x, φ)], (20)

with λ1 = ηr + ηal + ηa and λ̄[u(x, φ)] being given as the integral over φ′ ∈ [−π, π]
of the sum of nonlocal terms in (19) with φ and φ′ interchanged.

Remark 3. By defining the constant basic turning rate to be λ1 = ηr+ηal+ηa, we
generalised the model in [35] (where λ1 = 0). Note that the turning rates here are
linear functions of the non-local interactions with neighbours. This is in contrast to
the more general non-linear turning function f we considered in Section 2.1 for the
1D hyperbolic model. In what follows, we are interested in non-constant turning
rates λj(x, φ

′), j = r, a, al, and so we will henceforth assume λ3 6= 0.

As in [35], λj , j = r, a, al, are defined in terms of both distance kernels and
orientation kernels. The 2D distance kernels Kd

j , j = r, a, al are given by

Kd
j (x) =

1

Aj
e−(
√
x2+y2−dj)/m2

j , j = r, a, al, (21)

where constants Aj are chosen such that the kernels integrate to one. The orient-
ation kernels Ko

j measure the likelihood of turning in response to the movement
direction of neighbours (for alignment interactions) or in response to the position
of neighbours (for repulsive and attractive interactions):

Ko
al(θ, φ) =

1

2π
(1− cos(φ− θ)),

Ko
r,a(s,x, φ) =

1

2π
(1± cos(φ− ψ)),

where ψ is the angle between the positive x-axis and the relative location s−x of the
neighbours at s with respect to the reference individual at x. Finally, ω describes
the tendency to turn from direction φ′ to direction φ, as a result of interactions
with individuals moving in direction θ:

ω(φ′ − φ, φ′ − θ) = g(φ′ − φ−R(φ′ − θ)),

for some suitable choice of g and turning function R. Note that in the case λ1 = 0,
the function ω describes the probability of re-orientation in the sense discussed in
[36] and thus we require

∫
ω(φ′ − φ, φ′ − θ)dφ = 1. For example, g could be a

periodic function that integrates to one:

g(θ) =
1√
πσ

∑
z∈Z

e−( θ+2πz
σ )2 , θ ∈ (−π, π),

with σ a parameter measuring the uncertainty of turning (with small σ leading to
exact turning) [35, 36]. Another typical choice could be the von Mises distribution,
as in Vicsek-type models [27].

On the other hand, when λ1 > 0, then g can be interpreted as a small re-
orientation perturbation from the random turning behaviour and so ω satisfies∫
ω(φ′ − φ, φ′ − θ)dφ = 0 and therefore g is required to be odd.

Remark 4. Fetecau [35] showed that by imposing the turning angle to have only
two possible values φ = ±π, the 2D model (18) can be reduced to the 1D model
(1) for a specific choice of turning rates λ±[u+, u−]. More precisely, considering
the more general turning operators (19a) and (19b), we recover (2) with λ1, λ3 ≥
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0, λ2 = 0 for a linear turning function f(z) = z, and with the communication
mechanism

y±D[u+, u−] =
1

π
qal

∫ ∞
−∞

Kal(x− s)
(
u∓(s1, t)

)
ds1

+
1

π
qa

∫ x1

−∞
Ka(x− s)

(
u+(s1, t) + u−(s1, t)

)
ds1

+
1

π
qr

∫ ∞
x1

Kr(x− s)
(
u+(s1, t) + u−(s1, t)

)
ds1,

where x = (x1, 0) and s = (s1, 0). This is a similar turning behaviour to model M2
in [32], since individuals receive and emit omni-directional communication signals,
but with the function f linear. Moreover, as we will show in the next section, even if
the 2D model (18) can be reduced to a special case of the 1D model (1) without λ2 in
(2), the parabolic scaling of the 2D model reduces to a special case of the parabolic
scaling of the 1D model, which includes a λ2 term for non-directed turning. As we
will see shortly, this 2D parabolic scaling leads to the natural appearance of a non-
directed interaction contribution, suggesting that there are more subtle differences
between the 1D and 2D models.

The diffusion limit (i.e., x = x∗/ε, t = t∗/ε2) of a transport model similar to
(18), but with constant turning rates λ was discussed in [42, 51]. In the following we
consider the parabolic limit for model (18) with density-dependent turning rates.

3.1. Parabolic drift-diffusion limit. We focus on the case where individuals are
only influenced slightly by the presence of neighbours, i.e., the turning mechanism
can be assumed to be a small perturbation of a uniform turning probability. In
this case, we will show that the Boltzmann-type equation (18) can be reduced to a
drift-diffusion equation in the macroscopic regime.

We consider the scaling t = t∗/ε2, x = x∗/ε, where ε� 1 is a small parameter.
Since the velocity in the new variables is of order 1/ε, then we make the scaling
assumption that an individual’s turning behaviour is only influenced slightly by the
presence of neighbours:

T [u](x, φ′, φ) =
λ1

2π
+
λ2

2π
Kd ∗ ρ(x, t) + ε λ3B[u](x, φ′, φ), (22)

with ρ(x, t) =
∫ π
−π u(x, φ, t) dφ, and where we define

Kd(x) := qalK
d
al(x) + qaK

d
a(x) + qrK

d
r (x)

to be the social distance kernel. As we have done in the 1D case, we have separated
the non-directed and directed turning rates.

If λ3 6= 0, we factorise again the turning rate λ3 corresponding to the directed
interactions and write λ0

2 = λ2/λ3 the quotient of turning rates. With this notation,
λ̄[u(x, φ)] in (20) can be written as

λ̄[u(x, φ)] = λ0
2K

d ∗ u(x, φ, t) + ε yD[u(x, φ, t)], (23)

with yD[u] =
∫
B[u](x, φ′, φ)dφ′. Note that the turning rate λ given by (20)-(23)

corresponds to the 1D turning rates (14) with this specific choice of yD[u]. The
scaling assumption (22) can be derived by introducing reduced perception of direc-
tionality of neighbours into the re-orientation function ω and into the orientation
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kernels Ko
j ,

gj(ϑ) = λ0
2 + εGj(ϑ),

Ko
al(θ, φ) =

1

2π
(1− ε cos (φ− θ)) ,

Ko
r,a(s,x, φ) =

1

2π
(1± ε cos (φ− ψ)) ,

where Gj(ϑ), j = r, a, al are signal response functions to be chosen according to
the biological context. Substituting these expressions into the reorientation terms
(19), we define λ1 = ηal + ηr + ηa and we obtain (22) with a precise expression for
the social response function B[u].

If λ1 = 0, we further have λ2 = λ3/2π and
∫ π
−π Gj(φ

′ − φ − R(φ′ − θ))dφ = 0,
j = r, a, al as the probability to turn to any new angle is 1. In addition, we want
the turning function R(ϑ) to be close to an unbiased turning mechanism. This can
be expressed by taking R(ϑ) = εϑ, which indeed corresponds to weak interaction
between individuals, [36]. We obtain B[u] = Bal[u] +Ba[u] +Br[u] with

Bal[u](φ′, φ) =
1

2π
qalGal(φ

′ − φ)Kd
al ∗ ρ(x, t) (24)

− λ0
2

2π
qal

∫
R2

Kd
al(x− s)

∫ π

−π
cos (φ′ − θ) u(s, θ, t) dθ ds,

Br,a[u](φ′, φ) =
1

2π
qr,aGr,a(φ′ − φ)Kd

r,a ∗ ρ(x, t) (25)

± λ0
2

2π
qr,a

∫
R2

Kd
r,a(x− s) cos (φ′ − ψ) ρ(s, t) ds.

Remark 5. Note that in 2D, λ0
2 is introduced as the relative strength of non-

directed and directed turning kernels. This is part of the scaling assumption in 2D,
whereas in 1D, we introduced it as part of the model (1)-(2) before rescaling. Note
that λ0

2 = 1/2π in Fetecau’s model where no distinction is made between directed
and non-directed turning.

Let us introduce

Kd
∗ (x
∗) =

1

ε
Kd

(
x∗

ε

)
, B∗(x

∗, φ′, φ) =
1

2π
B

(
x∗

ε
, φ′, φ

)
.

Simplifying the notation by dropping ∗, system (18) writes in the new variables as

ε2∂tu+ ε γ eφ · ∇xu =
1

2π

(
λ1 + λ2K

d ∗ ρ
)

(ρ− 2πu) (26)

+ ε λ3 2π

∫ π

−π
B(x, φ′, φ)u(x, φ′, t) dφ′

− ε λ3 2π u(x, φ, t)

∫ π

−π
B(x, φ, φ′)dφ′ .

Using a Hilbert expansion approach, u = u0 +εu1 +ε2u2 + ..., and defining the mac-
roscopic densities ρi =

∫ π
−π ui dφ for i ∈ N0, we obtain at leading oder a relaxation

towards a uniform angular distribution at each position:

u0(x, φ, t) = ρ0(x, t)F (φ), (27)

F (φ) =
1

2π
1φ∈(−π,π].
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Integrating (26) with respect to the direction of motion φ, we obtain the continuity
equation

∂tρ0 + γ

∫ π

−π
eφ · ∇x u1dφ = 0. (28)

Comparing orders of ε and using (27), we can derive an expression for u1 in terms
of u0, ρ0, ρ1,

u1 =
1

2π
ρ1 − γ

eφ · ∇xu0

λ1 + λ2Kd ∗ ρ0

+ρ0
λ3

λ1 + λ2Kd ∗ ρ0

∫ π

−π
B[ρ0](x, φ′, φ)−B[ρ0](x, φ, φ′) dφ′.

Substituting into (28), we arrive at a macroscopic drift-diffusion equation of the
form

∂tρ0 = ∇x . (D[ρ0]∇xρ0 − ρ0k[ρ0]) ,

where the macroscopic diffusion coefficient D[ρ0] = γ2/(2(λ1 +λ2K
d ∗ ρ0)) and the

social flux

k[ρ0] =
λ3 γ

λ1 + λ2Kd ∗ ρ0

∫ π

−π

∫ π

−π
(eφ − eφ′)B[ρ0](x, φ′, φ)dφ′dφ (29)

are both described in terms of microscopic quantities. In the context of collective
behaviour of animal groups, we make two further assumptions:

(i) Individuals can process information in a similar manner for all three types of
social interactions:

Gal(ϑ) = Gr(ϑ) = Ga(ϑ) =: G(ϑ) ∀ϑ.
(ii) Individuals have symmetric perception, in other words, they can process in-

formation equally well from left and right. Then the turning probability func-
tion ω is bisymmetric,

ω(−α,−β) = ω(α, β),

which implies symmetry of the signal response function G.

Under these assumptions, the first term of the social response functions Bj [u] in
(24) and (25) cancels when substituted into the social flux (29). The second term
contains the factor λ0

2 which cancels with λ3 in (29), leaving us with a factor of
λ2 in the social flux. Using (27), we can simplify the social flux even further and
obtain the drift-diffusion equation

∂tρ = ∇x . (D0[ρ]∇xρ)−∇x . (ρk[ρ]) , (30a)

D0[ρ] =
γ2

2(λ1 + λ2Kd ∗ ρ)
, (30b)

k[ρ](x, t) =
λ2πγ

λ1 + λ2Kd ∗ ρ

(
qrK

d
r (x)

x

|x|
− qaKd

a(x)
x

|x|

)
∗ ρ. (30c)

For notational convenience, we dropped the zero in ρ0. Note that this equation is
similar to the 1D drift-diffusion equation (15) obtained via the parabolic limit for
linear social interactions.

Remark 6. Integrating the 2D scaling assumption (22), we have

λ(x, φ′) = λ1 + λ2K
d ∗ ρ(x, t) + ε λ3

∫
B[u](x, φ′, φ)dφ,
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which is a particular case of the 1D scaling assumption (14). More precisely, the
2D turning rate λ(x, φ′) corresponds to (2) on the projected velocity set {0, π},
with a linear turning function f(z) = z and with the non-directed and directed
communication mechanisms given by

yN [u] =Kd ∗ ρ(x, t),

y±D[u+, u−] =
G(0) +G(π)

2
Kd ∗ ρ(x, t) (31)

∓ λ0
2

∫
R
qalK

d
al(x− s)

(
u+(s1, t)− u−(s1, t)

)
ds1

∓ λ0
2

∫ x1

−∞

(
qrK

d
r (x− s)− qaKd

a(x− s)
)
ρ(s, t)ds1

± λ0
2

∫ ∞
x1

(
qrK

d
r (x− s)− qaKd

a(x− s)
)
ρ(s, t)ds1,

where x = (x1, 0), ρ(x, t) = u+(x1, t) + u−(x1, t) = u(x1, t), and where we used
assumptions (i) and (ii). Hence, model (1)+(14) with communication mechanism
(31) corresponds exactly to the 2D non-local kinetic model (18)+(22)+(24)+(25).
This means, for instance, that the macroscopic 2D model (30) reduces to the heat
equation for λ2 = 0, which is not the case in the parabolic limit (15) of the cor-
responding 1D hyperbolic model (1) with the turning rates given by (2). In fact,
our 2D scaling assumption gj(ϑ) = λ0

2 + εGj(ϑ), j = al, r, a, introduces the relative
strength of directed and non-directed turning kernels into the expression of the so-
cial response function B[u], which is responsible for the appearance of a factor λ2

in the drift of the macroscopic 2D model (30).

Remark 7. For some particular choices of distance kernels, the limiting parabolic
model (30) can be reduced to well known equations. Let us assume, for example,
that the distance kernels are constant on the whole domain,

Kd
j (x) = 1, j = al, a, r. (32)

This assumption corresponds to a setting in which individuals interact equally well
with all other individuals present in the entire domain. This is true locally for
example if we have many individuals packed in little space. Under assumption (32)
together with λ1 = 0, model (30) simplifies to

∂tρ =
C0

λ2
∆ρ+ C1∇ .

(
ρ

∫
R2

eψρ(s) ds

)
,

where

eψ =
s− x

|s− x|
,

and C0, C1 are constants depending only on γ, qal, qa, qr and the total mass
∫
ρdx.

If qa = qr, then the attraction and repulsion forces cancel out (C1 = 0) and we
obtain the heat equation. Let us henceforth assume qa 6= qr. Furthermore, we can
write the social flux as

k[ρ] = ∇W ∗ ρ, (33)

where the interaction potential W : R2 −→ R is given by W (x) = C1|x|. In fact, for
the more general distance kernels (21) the social flux can also be written in the form
(33), with the interaction potential W behaving like |x| close to zero and decaying
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exponentially fast as |x| −→ ∞ (e.g. Morse potentials). Therefore, we recover the
diffusive aggregation equation

∂tρ = ∆ρ+∇ . (ρ (∇W ∗ ρ)) ,

which models the behaviour of particles interacting through a pairwise potential
while diffusing with Brownian motion. This type of equation has received a lot of
attention in recent years because of its ubiquity in modelling aggregation processes,
such as collective behaviour of animals [47, 49, 9, 26] and bacterial chemotaxis [10]
(see also the references therein).

3.2. Grazing collision limit. In the following, we consider another type of scaling
that leads to parabolic equations, by focusing on the case where individuals turn
only a small angle upon interactions with neighbours. This is biologically realistic
as, for example, many migratory birds follow favourable winds or magnetic fields
[50] and social interactions with neighbours might not have a considerable impact
on directional changes of individuals. The so-called grazing collisions, i.e. collisions
with small deviation, correspond to this assumption. In this case, we show that the
Boltzmann-type equation (18) can be reduced to a Fokker-Planck equation with
non-local advective and diffusive terms in the orientation space.

For simplicity, the 2D kinetic model (18) can be re-written as

∂u

∂t
+ γeφ∇xu = −Q−[u] +Q+[u, u],

with

Q−[u] = Q−r [u] +Q−a [u] +Q−al[u], Q+[u, u] = Q+
r [u, u] +Q+

a [u, u] +Q+
al[u, u],

Q−j [u] = λj(x, φ)u, Q+
j [u, u] =

∫ π

−π
Tj(x, φ

′, φ)u(x, φ′, t)dφ′, for j = r, al, a.

Let us focus for now only on the alignment interactions; the analysis of attraction
and repulsion interactions is similar. The grazing collision assumption suggests that
we can rescale the probability of re-orientation as follows:

ωεal (φ− φ′, φ− θ) =
1

ε
gε

(φ− φ′ − εR(φ− θ)
ε

)
.

Here, the parameter ε is related to the small re-orientation angle following interac-
tions with neighbours moving in direction θ. If we denote by εβ = φ−φ′−εR(φ−θ),
then since ωε integrates to 1, we obtain:

1 =

∫ π

−π
ωεal(φ− φ′, φ− θ)dφ′ =

∫ π+φ−R(φ−θ)

−π+φ−R(φ−θ)
gε(β)dβ =

∫ π

−π
gε(β)dβ,

by periodicity of gε. Generally, when an interaction kernel in the Boltzmann equa-
tion presents a singularity point, the troubles are avoided by considering a weak
formulation of the Boltzmann operator [38, 20]. Expanding Qal[u] := −Q−al[u] +

Q+
al[u, u], we obtain for all ψ ∈ C∞c ([−π, π]),∫ π

−π
Qal[u]ψ(φ)dφ = ηal

∫ π

−π

(
1

2π
ρ(x, t)− u(x, φ, t)

)
ψ(φ)dφ

+

∫ π

−π

∫ π

−π

∫
R2

{
λ3qalK

d
al(x− s)K0

al(θ, φ)u(x, φ, t)u(s, θ, t)(∫ π

−π
ωεal(φ− φ′, φ− θ)

[
ψ(φ′)− ψ(φ)

]
dφ′
)}

dsdθdφ. (35)
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By substituting φ′ = φ − εβ − εR(φ − θ) into the ψ(φ′) term in (35), and then
expanding in Taylor series about φ we obtain:∫ π

−π
ωεal(φ− φ′, φ− θ)

[
ψ(φ′)− ψ(φ)

]
dφ′ ≈∫ π

−π
gε(β)

[(
− εβ − εR(φ− θ)

)∂ψ
∂φ

+
ε2

2

(
β +R(φ− θ)

)2 ∂2ψ

∂φ2

]
dβ.

Equation (35) can thus be approximated by∫ π

−π
Qal[u]ψ(φ)dφ = ηal

∫ π

−π

(
1

2π
ρ(x, t)− u(x, φ, t)

)
ψ(φ)dφ

−
∫ π

−π

∂

∂φ

[
u(x, φ, t)Cεal[u, x, φ]

]
ψ(φ)dφ

+

∫ π

−π

∂2

∂φ2

[
u(x, φ, t)Dε

al[u, x, φ]
]
ψ(φ)dφ,

with the definitions

Cεal[u, x, φ] =

∫ π

−π

∫
R2

λ3qalK
d
al(x− s)K0

al(θ, φ)Aεal(φ− θ)u(s, θ, t)dθds,

Dε
al[u, x, φ] =

∫ π

−π

∫
R2

λ3qalK
d
al(x− s)K0

al(θ, φ)Bεal(φ− θ)u(s, θ, t)dθds,

where

Aεal(φ− θ) =− ε
(
M1(ε) +M0(ε)R(φ− θ)

)
,

Bεal(φ− θ) =
ε2

2

(
M2(ε) + 2M1(ε)R(φ− θ) +M0(ε)R(φ− θ)2

)
,

and Mn(ε) =
∫ π
−π β

ngε(β)dβ, n = 0, 1, 2, denote the moment generating functions

of gε(β). In a similar manner we can approximate the attractive and repulsive
non-local terms:∫ π

−π
Qr,a[u]ψ(φ)dφ = ηr,a

∫ π

−π

(
1

2π
ρ(x, t)− u(x, φ, t)

)
ψ(φ)dφ

−
∫ π

−π

∂

∂φ

(
u(x, φ, t)Cεr,a[u, x, φ]

)
ψ(φ)dφ

+

∫ π

−π

∂2

∂φ2

(
u(x, φ, t)Dε

r,a[u, x, φ]
)
ψ(φ)dφ,

where

Cεr,a[u, x, φ] =

∫ π

−π

∫
R2

λ3qr,aK
d
r,a(x− s)K0

r,a(s, x, φ)Aεr,a(s, x, φ)u(s, θ, t)dsdθ,

Dε
r,a[u, x, φ] =

∫ π

−π

∫
R2

λ3qr,aK
d
r,a(x− s)K0

r,a(s, x, φ)Bεr,a(s, x, φ)u(s, θ, t)dsdθ,

Aεr,a(s, x, φ) =− ε(M1(ε)M0(ε)R(φ− ψs)),

Bεr,a(s, x, φ) =
ε2

2

[
M2(ε) + 2M1(ε)R(φ− ψs) +M0(ε)R(φ− ψs)2

]
.
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Therefore, the kinetic model (18) in the strong formulation can be approximated
(when individuals turn only by a small angle upon interactions with their neigh-
bours) by the following Fokker-Planck model that contains all three social interac-
tions:

∂u

∂t
+ γeφ · ∇xu =λ1

(
1

2π
ρ(x, t)− u(x, φ, t)

)
(36)

+
∂

∂φ

[
− uCε[u, x, φ] +

∂

∂φ
(uDε[u, x, φ])

]
,

with λ1 = ηa + ηal + ηr and

Cε[u, x, φ] = Cεal[u, x, φ] + Cεr [u, x, φ] + Cεa[u, x, φ],

Dε[u, x, φ] = Dε
al[u, x, φ] +Dε

r [u, x, φ] +Dε
a[u, x, φ].

While non-local 2D Fokker-Planck models have been introduced in the past years
in connection to self-organised aggregations, the majority of these models consider
local diffusion [28, 3]. If we neglect the ε2 terms (i.e., Bε ≈ 0) and assume λ1 = 0,
equation (36) reduces to a Vlasov-type flocking equation:

∂u

∂t
+ γeφ · ∇xu+

∂

∂φ

[
uCε[u, x, φ]

]
= 0.

These type of models have been previously derived from individual-based models
(Vicsek or Cucker-Smale models) with or without noise [28, 39, 20].

4. Asymptotic preserving methods for 1D models. The kind of diffusion
asymptotics we employed in the previous sections have been numerically investig-
ated in [21] using so-called asymptotic preserving (AP) schemes. The AP methods,
which improve the scheme already proposed in [37], are a fully explicit variation of
the methods introduced in [44, 45]. They are a powerful tool to investigate how
patterns are preserved in the parabolic limit by providing numerical schemes for all
intermediate models of a scaling process given some scaling parameter ε > 0, and
naturally produce a suitable numerical method for the limiting model as ε → 0.
Here, we apply these schemes only to the 1D models introduced in Section 2, since
the numerics become much more complex in two dimensions. Taking advantage of
our understanding of the limit process, we base our scheme on a splitting strategy
with a convective-like step involving the transport part of the operator and an
explicitly solvable ODE step containing stiff sources (see Section 4.2).

4.1. Odd and even parity. We consider the 1D kinetic model (1) written as an
odd-even decomposition,{

∂tr + γ∂xj = 0,

∂tj + γ∂xr = −2λ+[r, j](r + j) + 2λ−[r, j](r − j),

with the equilibrium part (macro part/even part) r and the non-equilibrium part
(micro part/odd part) j given by

r(x, t) =
1

2

(
u+(x, t) + u−(x, t)

)
, j(x, t) =

1

2

(
u+(x, t)− u−(x, t)

)
.
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Under scaling assumption (10) for (2), this model reads in the new variables x =
x̃/ε, t = t̃/ε2 as follows:

ε∂t̃r̃ + γ∂x̃j̃ =0

ε∂t̃j̃ + γ∂x̃r̃ = r̃λ3(f [ỹ−]− f [ỹ+])

− 1

ε
j̃
(

2λ1 + 4ελ2f
(
K̃N ∗ r̃

)
+ ελ3(f [ỹ+] + f [ỹ−])

)
,

where K̃N (x̃) = 1
εK

N ( x̃ε ). Rearranging the terms and dropping “∼” for notational

convenience, we obtain for r and J := 1
ε j:

∂tr + γ∂xJ = 0

∂tJ + γ∂xr =
1

ε2
rλ3(f [y−]− f [y+]) +

(
1− 1

ε2

)
γ∂xr

− 1

ε2
J
(
2λ1 + 4ελ2f

(
KN ∗ r

)
+ ελ3(f [y+] + f [y−])

)
.

(37)

4.2. Operator splitting. We can now employ an operator splitting method on
(37), separating the stiff source part, which can be treated by an implicit Euler
method, and the transport part, which we can solve by an explicit method such as
upwinding:

1. Stiff source part:

∂tr =0,

∂tJ =
1

ε2
rλ3(f [y−]− f [y+]) +

(
1− 1

ε2

)
γ∂xr (38)

− 1

ε2
J
(
2λ1 + 4 ε λ2f

(
KN ∗ r

)
+ ε λ3(f [y+] + f [y−])

)
.

2. Transport part:

∂tr + γ ∂xJ = 0, (39)

∂tJ + γ ∂xr = 0.

It can easily be verified that, in the limit ε→ 0, we recover indeed the macroscopic
model (11) for u = 2r.

4.3. Alternated upwind discretisation. In the following, we are interested in
the numerical implementation of model (1) with the turning rates (2) depending on
a non-linear turning function f without a non-directed density-dependent turning
term (i.e. λ2 = 0). As shown in Section 2.1, in this case, the parabolic limit yields
the drift-diffusion equation (11)

∂tu = D0∂xxu−B0∂x
(
u(f−[u]− f+[u])

)
,

with D0 = γ2/(2λ1) and B0 = λ3γ/(2λ1). Note the shortcut notation f±[u] =
f(y±D[u]). We propose an alternated upwind discretisation with the even part r
evaluated at full grid points xi = i∆x, and the odd part J evaluated at half grid
points xi+ 1

2
= (i + 1

2 ) ∆x. First, we discretise the stiff source part (38) using an

implicit Euler discretisation and respecting the direction of the drift. We obtain an
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explicit expression for J∗,

J∗i+ 1
2

=
ε2Jn

i+ 1
2

+ γ ∆t
∆x

(
ε2 − 1

) (
rni+1 − rni

)
ε2 + 2λ1∆t+ ελ3∆t (f+[rn] + f−[rn])i+ 1

2

+
λ3∆t

(
(f−[rn]− f+[rn])

+
i+ 1

2
rni + (f−[rn]− f+[rn])

−
i+ 1

2
rni+1

)
ε2 + 2λ1∆t+ ελ3∆t (f+[rn] + f−[rn])i+ 1

2

,

with r∗ = rn. Here, rn and Jn are the numerical solutions of r and J at time
tn = n∆t. We use the “∗”-notation for half steps in time. Since J is evaluated at half
grid point, the discretisation of the transport part (39) can be chosen independently
of the sign of the drift,

1

∆t

(
rn+1
i − r∗i

)
+

1

∆x

(
J∗i+ 1

2
− J∗i− 1

2

)
= 0,

1

∆t

(
Jn+1
i+ 1

2

− J∗i+ 1
2

)
+

1

∆x

(
r∗i+1 − r∗i

)
= 0.

Taking the limit ε → 0 in the expression for J∗
i+ 1

2

and substituting into the first

equation of the transport part, we obtain the following discretisation of the one-
dimensional macroscopic model (11):

un+1
i − uni

∆t
=

D0

(∆x)2

(
∂(c)
xx u

n
)
i

− B0

∆x

(
uni
(
f−[rn]− f+[rn]

)+
i+ 1

2

− uni−1

(
f−[rn]− f+[rn]

)+
i− 1

2

)
− B0

∆x

(
uni+1

(
f−[rn]− f+[rn]

)−
i+ 1

2

− uni
(
f−[rn]− f+[rn]

)−
i− 1

2

)
.

Here, ∂
(c)
xx un denotes the standard central difference discretisations. This illustrates

how the choice of discretisation for (38) directly induces a discretisation of model
(11). We will now use this scheme to investigate how some of the patterns observed
in model (1)-(2) change as ε→ 0.

Remark 8. The stability restriction for the proposed AP scheme is less clear. We
can expect that the time steps size ∆t needs to be sufficiently small, with an upper
stability bound depending on the space step size ∆x, the diffusion coefficient D0,
and the social interaction kernels via the terms KN ∗ u and f±[u].

4.4. Simulation results. In Section 2.2 we have seen that for model M4, the two
Hopf bifurcations that occurred for the k4 and k5 modes have disappeared as ε→ 0.
In this Section, we start with a rotating wave pattern (i.e., travelling pulses) that
arises at ε = 1 through a Hopf bifurcation (i.e., for the same parameter values as in
Figure 4: qa = 1.545, qr = 2.779, λ1 = 0.2, λ2 = 0, λ3 = 0.9, γ = 0.1, A = 2). Then,
we investigate numerically what happens with this pattern as ε → 0. The initial
conditions for the simulations are random perturbations – of maximum amplitude
0.2 – of the spatially homogeneous steady state u∗ = A/2 = 1. We start with ε = 1,
and run the numerical simulations up to t = 1000. Then we decrease ε, and choose
the new initial condition to be the final solution obtained with the previous ε value.

Figure 6(a) shows the amplitude of the patterns obtained when ε ∈ [0, 1], for
the particular parameter values mentioned before. Since some of these amplitudes
show time-oscillations between different values, we graph their maximum and min-
imum values for each ε. As we decrease ε from 1.0 towards 0.64 (region III), the
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Figure 6. The amplitude and density profile of the patterns ob-
tained for qa = 1.545, qr = 2.779, qal = 0, λ1 = 0.2, λ2 = 0,
λ3 = 0.9 with model M4, as ε is decreased from 1.0 to 0.0. (a)
Bifurcation diagram for the amplitude of the patterns as a func-
tion of ε. For ε ≤ 0.32 (region I), the amplitude is constant. For
ε ∈ (0.32, 0.64) (region II) the amplitude oscillates between two
different values. For ε ≥ 0.64 (region III) there are some very
small oscillations in the amplitude, however due to the scale of the
plot these oscillations are almost unobservable. (b) Amplitude of
the patterns for ε ∈ [0, 0.6] and for t ∈ (0, 50). We show here
maxx∈[0,L]u(x, t)−minx∈[0,L]u(x, t), with u = u+ + u−. (c) Amp-
litude of the patterns for ε ∈ [0.7, 1.0] and for t ∈ (0, 50).

amplitude undergoes some very small temporal oscillations (see also Figure 6 (c)),
corresponding to the rotating wave patterns (with a small time-modulation) shown
in Figure 7(c). For ε ∈ (0.32, 0.64) (region II), the amplitude oscillates between two
large values. This corresponds to the “inside-group” zigzagging behaviour shown
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in Figure 7(b) near x = 6, where the group as a whole does not move in space but
individuals inside the group move between the left and right edges of the group. We
also note a period-doubling bifurcation at ε = 0.61 (region II, Figure 6(a); see the
two dots that appear between the main branches), which leads to a slight decrease in
the amplitude. Finally, as ε is decreased below 0.32 (region I), the movement inside
the group is lost and the pattern is described by stationary pulses with fixed amp-
litude (see Figure 6(a) and Figure 7(a)). Figures 6(b),(c) show the time-variation
of the amplitudes of the spatial and spatiotemporal patterns obtained for ε ∈ [0, 1].
Figures 7(a’)-(c’) show the density profiles of the patterns observed in regions I-III.

Because the macro-scale models (ε = 0) seem to exhibit stationary pulses (as
shown in Figure 7(a)), we now start with these stationary pulses (for ε = 1) and
investigate whether they change in any way as ε→ 0. We focus here on model M2
(see Figure 3). Figure 8 shows the amplitude of the stationary pulses obtained with
model M2 in a particular parameter region (qa = 2.2, qr = 0.93, qal = 0; see also
Figure 4), as we decrease the scaling parameter ε. We observe that in this case, the
scaling does not affect the patterns or their amplitudes.

Remark 9. Note that the rotating wave pattern shown in Figure 7(c) for ε = 1
is obtained near a Hopf/steady-state bifurcation (with k5 the Hopf wavenumber),
and hence the 5 rotating peaks that form this pattern. However, as ε → 0, the
wavenumber k3 seems to become unstable (hence the 3 peaks for the patterns shown
in Figure 7(a),(b)), even if the dispersion relation shown in Figure 4(b) suggests that
k3 should be stable.

5. Summary and discussion. In this study, we investigated the connections
between a class of 1D and 2D non-local kinetic models and their limit macroscopic
models for self-organised biological aggregations. The non-locality of these models
was the result of the assumptions that individuals can interact with neighbours
positioned further away, but still within their perception range. To simplify the
kinetic models that incorporate microscopic-level interactions (such as individuals’
speed and turning rates), we focused on two types of scalings, namely a parabolic
and a grazing collision limit, which lead to parabolic models described in terms of
average speed and average turning behaviour. We showed that while for the kinetic
models the non-local interactions influence the turning rates (i.e., individuals turn
to approach their neighbours, to move away from them or to align with them), for
the limit parabolic models the non-local interactions influence the dispersion and
the drift of the aggregations. In particular, we showed that the assumption that
individuals can turn randomly following the non-directional perception of neigh-
bours around them leads, in the macroscopic scaling, to density-dependent diffu-
sion. Moreover, this diffusion decreased with the increase in the population density.
Biologically, this means that larger animal groups are less likely to spread out.
This phenomenon has been observed for various species. For example, studies have
shown that aggregations of locusts [13] or ants [4] can persist only if the number of
individuals is above a certain threshold.

The introduction in (2) of the term yN describing random non-directional turning
(which generalised the turning rates in [33]) was required by the comparison of the
parabolic limit models in 1D and 2D. In particular, the 2D parabolic limit lead to
the natural appearance of this term, which is absent from the 1D parabolic model.
Therefore, to obtain similar parabolic models in 1D and 2D, we had to explicitly add
yN in equation (2). This suggests that even if the 2D model (18) can be reduced to a
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Figure 7. The spatial and spatio-temporal patterns obtained with
model M4, for qa = 1.545, qr = 2.779, qal = 0, λ1 = 0.2, λ2 = 0,
λ3 = 0.9, as ε is decreased from 1.0 to 0.0, using model M4. (a) Sta-
tionary pulse patterns observed in region I: ε ≤ 0.32; (b) “Inside-
group” zigzag patterns observed in region II: ε ∈ (0.32, 0.64); (c)
Rotating wave (traveling pulse) patterns observed in region III:
ε ≥ 0.64. Panels (a’)-(c’) show the density profiles corresponding
to patterns in panels (a)-(c), at time t = 1000.

special case of the 1D model (1) (as shown in [35]) there are more subtle differences
between these nonlocal 1D and 2D models. These differences can impact the types
of patterns displayed by the 2D models – an aspect that we will address in a future
study.

Next, we investigated how two types of patterns (i.e., travelling and stationary
aggregations) displayed by the 1D kinetic models, were preserved in the limit to
macroscopic parabolic models. To this end, we first investigated the local stabil-
ity of spatially homogeneous patterns characterised by individuals spread evenly
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Figure 8. The amplitude and density of the patterns obtained for
model M2 with qa = 2.2, qr = 0.93, qal = 0, λ1 = 0.2, λ2 = 0, λ3 =
0.9, as ε is decreased from 1.0 to 0.0. (a) Bifurcation diagram for
the amplitude of the patterns as a function of ε. (b) Density profile
for the stationary patterns. (c) Time-space plot of the density.

over the domain, and showed that local Hopf bifurcations are lost in the parabolic
limit. These Hopf bifurcations give rise to travelling aggregations (i.e., rotating
waves). We then tested this observation numerically, with the help of asymptotic
preserving methods. We started with a rotating wave pattern obtained near a
Hopf/Steady-state bifurcation for ε = 1 (1D kinetic model; see Figure 7(c)), and
studied numerically how this pattern changes when ε→ 0 (1D parabolic model; see
Figure 7(a)). By graphing in Figure 6(a) the amplitude of the resulting patterns
as the scaling parameter ε is decreased from ε = 1 to ε = 0, we showed that there
were two major transitions. The first transition occurred around ε = 0.64, when
the travelling (rotating) groups stopped moving. We note, however, that while the
group as a whole was stationary, the individuals inside the group were still mov-
ing between the left- and right-edges of the group, leading to an “inside-group”
zigzagging behaviour. The second transition occurred around ε = 0.32, when the
individuals inside the groups stopped moving, leading to stationary pulses.

We emphasise here that this study is one of the first in the literature to investig-
ate numerically the transitions between different aggregation patterns, as a scaling
parameter ε is varied from values corresponding to mesoscale dynamics (ε = 1) to
values corresponding to macroscale dynamics (ε = 0). Understanding these trans-
itions is important when investigating biological phenomena that occur on multiple
scales, since it allows us to make decisions regarding the models that are most
suitable to reproduce the observed dynamics.

In this study we investigated the preservation of patterns via the 1D parabolic
limit, but similar investigations could be performed for the grazing collision limit.
Moreover, as shown previously [32], model (1) can display many more types of
complex spatio-temporal patterns then the two types of patterns investigated here.
We focused on travelling and stationary aggregations since our aim here was not
to investigate how all possible patterns are preserved by all these different scal-
ing approaches. Rather, it was to show that by taking these asymptotic limits,
some patterns could be lost. Therefore, even if the macroscopic models are sim-
pler to investigate, they might not exhibit the same patterns as the kinetic models.
Our analysis aimed at highlighting the usefulness of asymptotic preserving numer-
ical methods to understand the bifurcation of the solutions as one investigates the
transition from mesoscopic-level to macroscopic-level aggregation dynamics.
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nol., Birkhäuser Boston, Inc., Boston, MA, 2010, 297–336.

[21] J. A. Carrillo, T. Goudon, P. Lafitte and F. Vecil, Numerical schemes of diffusion asymptotics

and moment closures for kinetic equations, J. Sci. Comput., 36 (2008), 113–149.
[22] J. A. Carrillo, Y. Huang and S. Martin, Explicit flock solutions for quasi-morse potentials,

European J. Appl. Math., 25 (2014), 553–578.

http://www.ams.org/mathscinet-getitem?mr=MR2382411&return=pdf
http://dx.doi.org/10.1016/j.mcm.2007.02.016
http://dx.doi.org/10.1016/j.mcm.2007.02.016
http://www.ams.org/mathscinet-getitem?mr=MR1848592&return=pdf
http://dx.doi.org/10.1081/TT-100105365
http://dx.doi.org/10.1081/TT-100105365
http://www.ams.org/mathscinet-getitem?mr=MR3199779&return=pdf
http://dx.doi.org/10.1073/pnas.161285298
http://dx.doi.org/10.1073/pnas.161285298
http://dx.doi.org/10.1080/1027336042000288633
http://dx.doi.org/10.1080/1027336042000288633
http://www.ams.org/mathscinet-getitem?mr=MR2362760&return=pdf
http://dx.doi.org/10.1142/S0218202507002431
http://dx.doi.org/10.1142/S0218202507002431
http://dx.doi.org/10.1016/j.plrev.2009.06.002
http://dx.doi.org/10.1016/j.plrev.2009.06.002
http://www.ams.org/mathscinet-getitem?mr=MR2370171&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2006.09.012
http://dx.doi.org/10.1016/j.nonrwa.2006.09.012
http://www.ams.org/mathscinet-getitem?mr=MR2480108&return=pdf
http://dx.doi.org/10.1088/0951-7715/22/3/009
http://dx.doi.org/10.1088/0951-7715/22/3/009
http://www.ams.org/mathscinet-getitem?mr=MR2226917&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2166611&return=pdf
http://dx.doi.org/10.1002/mma.638
http://dx.doi.org/10.1002/mma.638
http://dx.doi.org/10.1126/science.1125142
http://www.ams.org/mathscinet-getitem?mr=MR3149317&return=pdf
http://dx.doi.org/10.1142/S0218202513400101
http://dx.doi.org/10.1142/S0218202513400101
http://www.ams.org/mathscinet-getitem?mr=MR3277209&return=pdf
http://dx.doi.org/10.1137/130932272
http://dx.doi.org/10.1137/130932272
http://dx.doi.org/10.1007/s00285-014-0842-3
http://dx.doi.org/10.1007/s00285-014-0842-3
http://www.ams.org/mathscinet-getitem?mr=MR2307761&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2006.04.002
http://dx.doi.org/10.1016/j.nonrwa.2006.04.002
http://www.ams.org/mathscinet-getitem?mr=MR2507454&return=pdf
http://dx.doi.org/10.3934/krm.2009.2.363
http://dx.doi.org/10.3934/krm.2009.2.363
http://www.ams.org/mathscinet-getitem?mr=MR2596552&return=pdf
http://dx.doi.org/10.1137/090757290
http://dx.doi.org/10.1137/090757290
http://www.ams.org/mathscinet-getitem?mr=MR2744704&return=pdf
http://dx.doi.org/10.1007/978-0-8176-4946-3_12
http://dx.doi.org/10.1007/978-0-8176-4946-3_12
http://www.ams.org/mathscinet-getitem?mr=MR2434840&return=pdf
http://dx.doi.org/10.1007/s10915-007-9181-5
http://dx.doi.org/10.1007/s10915-007-9181-5
http://www.ams.org/mathscinet-getitem?mr=MR3251743&return=pdf
http://dx.doi.org/10.1017/S0956792514000126
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