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Abstract. We study stability of solutions of the Cauchy problem on the line

for the Camassa–Holm equation ut−uxxt + 3uux− 2uxuxx−uuxxx = 0 with
initial data u0. In particular, we derive a new Lipschitz metric dD with the

property that for two solutions u and v of the equation we have dD(u(t), v(t)) ≤
eCtdD(u0, v0). The relationship between this metric and the usual norms in
H1 and L∞ is clarified. The method extends to the generalized hyperelastic-

rod equation ut − uxxt + f(u)x − f(u)xxx + (g(u) + 1
2
f ′′(u)(ux)2)x = 0 (for f

without inflection points).

1. Introduction

The Cauchy problem for the Camassa–Holm (CH) equation [3, 4],

(1.1) ut − utxx + κux + 3uux − 2uxuxx − uuxxx = 0,

where κ ∈ R is a constant, has attracted much attention due to the fact that it
serves as a model for shallow water waves [8] and its rich mathematical structure.
For example, it has a bi-Hamiltonian structure, infinitely many conserved quantities
and blow-up phenomena have been studied, see, e.g., [5], [6], and [7].

We here focus on the construction of the Lipschitz metric for the semigroup of
conservative solutions on the real line. This problem has been recently considered
by Grunert, Holden, and Raynaud [12] in the periodic case, and here we want to
present how the approach used there has to be modified in the non-periodic case.

For simplicity, we will only discuss the case κ = 0, that is,

(1.2) ut − utxx + 3uux − 2uxuxx − uuxxx = 0,

and from now on we refer to (1.2) as the CH equation. However, the approach
presented here can also handle the generalized hyperelastic-rod equation, see Re-
mark 2.9. In particular, it includes the case with nonzero κ. The generalized
hyperelastic-rod equation has been introduced in [15]. It is given by

(1.3) ut − uxxt + f(u)x − f(u)xxx + (g(u) +
1

2
f ′′(u)(ux)2)x = 0

where f and g are smooth functions.1 With f(u) = u2

2 and g(u) = κu + u2,

we recover (1.1) for any κ. With f(u) = γu2

2 and g(u) = 3−γ
2 u2, we obtain the
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1In addition, the function f is assumed to be strictly convex or concave.
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hyperelastic-rod wave equation:

ut − utxx + 3uux − γ(2uxuxx + uuxxx) = 0,

which has been introduced by Dai [9, 10, 11].
Equation (1.2) can be rewritten as the following system

ut + uux + Px = 0,(1.4)

P − Pxx = u2+
1

2
u2
x,(1.5)

where we choose u to be an element of H1(R). The H1 norm is preserved as

(1.6)
d

dt
‖u(t)‖2H1(R) =

d

dt

∫
R

(u2 + u2
x)dx = 0,

for any smooth solution u. However, even for smooth initial data, the solution may
break down in finite time. In this case, the solution experiences wave breaking
([4, 5]): The solution remains bounded while, at some point, the spatial derivative
ux tends to −∞. This phenomenon can be nicely illustrated by the so called
multipeakon solutions. These are solutions of the form

(1.7) u(t, x) =

n∑
i=1

pi(t)e
−|x−qi(t)|.

Let us consider the case with n = 2 and one peakon p1(0) > 0 (moving to the
right) and one antipeakon p2(0) < 0 (moving to the left). In the symmetric case
(p1(0) = −p2(0) and q1(0) = −q2(0) < 0) the solution u will vanish pointwise
at the collision time t∗ when q1(t∗) = q2(t∗), that is, u(t∗, x) = 0 for all x ∈
R. At time t = t∗, the whole energy is concentrated at the origin, and we have
limt→t∗(u

2 +u2
x) dx = ‖u0‖H1 δ, with δ denoting the Dirac delta distribution at the

origin. In general we have two possibilities to continue the solution beyond wave
breaking, namely to set u identically equal to zero for t > t?, which is called a
dissipative solution, or to let the peakons pass through each other, which is called
a conservative solution and which is depicted in Figure 1. We are interested in the
latter case, for which solutions have been studied by Bressan and Constantin [1]
and Holden and Raynaud [13, 14]. Since the H1-norm is preserved, the space H1

appears as a natural space for the semigroup of solutions. However, the previous
multipeakon example reveals the opposite. Indeed, u(t∗, x) = 0 for all x ∈ R.
Thus, the trivial solution ū, that is, ū(t, x) = 0 for all t, x ∈ R, which is also
a conservative solution, coincides with u at t = t∗. To define a semigroup of
conservative solutions, we therefore need more information about the solution than
just its pointwise values, for instance, the amount and location of the energy which
concentrates on sets of zero measure. This justifies the introduction of the set D of
Eulerian coordinates, see Definition 4.1, for which a semigroup can be constructed
[13].

Furthermore, the H1 norm is not well suited to establish a stability result. Con-
sider, e.g., the sequence of multipeakons uε defined as uε(t, x) = u(t − ε, x), see
Figure 1. Then, assuming that ‖u(0)‖H1(R) = 1, we have

lim
ε→0
‖u(0)− uε(0)‖H1(R) = 0, and ‖u(t?)− uε(t?)‖H1(R) = ‖uε(t?)‖H1(R) = 1,

so that the flow is clearly discontinuous with respect to the H1 norm.
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Figure 1. The dashed curve depicts the antisymmetric multi-
peakon solution u(t, x), which vanishes at t∗, for t = 0 (left) and
t = t∗ (middle) and t = 2t∗ (right). The solid curve depicts the
multipeakon solution given by uε(t, x) = u(t− ε, x) for some small
ε > 0 (the CH equation is invariant with respect to time transla-
tion).

The aim of this article is to present a metric for which the semigroup of conser-
vative solutions on the line is Lipschitz continuous. A more extensive discussion
about Lipschitz continuity with examples from ordinary differential equations, can
be found in [2]. A detailed presentation for the Camassa–Holm equation in the
periodic case is presented in [12], thus we here focus on explaining the differences
between the periodic case and the decaying case. However, we first present the
general construction.

The construction of the metric is closely connected to the construction of the
semigroup itself. Let us outline this construction. We rewrite the CH equation
in Lagrangian coordinates and obtain a semilinear system of ordinary differential
equations: Let u(t, x) denote the solution and y(t, ξ) the corresponding character-
istics, thus yt(t, ξ) = u(t, y(t, ξ)). Then our new variables are y(t, ξ), as well as

(1.8) U(t, ξ) = u(t, y(t, ξ)), H(t, ξ) =

∫ y(t,ξ)

−∞
(u2 + u2

x)dx,

where U corresponds to the Lagrangian velocity while H can be interpreted as
the Lagrangian cumulative energy distribution. The time evolution for any X =
(y, U,H) is described by

(1.9)

yt = U,

Ut = −Q,
Ht = U3 − 2PU,

where

(1.10) P (t, ξ) =
1

4

∫
R

exp(−|y(t, ξ)− y(t, η)|)(U2yξ +Hξ)(t, η)dη,

and
(1.11)

Q(t, ξ) = −1

4

∫
R

sign(y(t, ξ)− y(t, η)) exp(−|y(t, ξ)− y(t, η)|)(U2yξ +Hξ)(t, η)dη.

This system is well-posed as a locally Lipschitz system of ordinary differential equa-
tions in a Banach space, and we can define a semigroup of solution which we denote
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St. From standard theory for ordinary differential equations we know that St is
locally Lipschitz continuous, that is, given T and M ,

(1.12) ‖St(Xα)− St(Xβ)‖ ≤ CM,T ‖Xα −Xβ‖

for any t ∈ [0, T ], Xα, Xβ ∈ BM = {X | ‖X‖ ≤M} and where the constant CM,T

depends only on M and T .
The mapping from Lagrangian to Eulerian coordinates is surjective but not bi-

jective. The discrepancy between the two sets of coordinates is due to the freedom
of relabeling in Lagrangian coordinates. The relabeling functions form a group,
which we denote G, and which basically consists of the diffeomorphisms of the line
with some additional assumptions (see Definition 2.3). Given X = (y, U,H), the
element X ◦ f = (y ◦ f, U ◦ f,H ◦ f) is the relabeled version of X by the relabeling
function f ∈ G. Using the fact that the semigroup St is equivariant with respect
to relabeling, that is,

(1.13) St(X ◦ f) = St(X) ◦ f,

we can construct a semigroup of solutions on equivalence classes from St. Finally,
after establishing the existence of a bijection between the Eulerian coordinates and
the equivalence classes in Lagrangian coordinates, we can transport the semigroup
of solutions defined on equivalence classes and construct a semigroup, which we
denote Tt, of conservative solutions in D.

We want to find a metric which makes Tt Lipschitz continuous. For that purpose,
we introduce a pseudometric2 in Lagrangian coordinates which does not distinguish
between elements of the same equivalence class and which, at the same time, leaves
the semigroup St locally Lipschitz continuous. This strategy has been used in [2]
for the Hunter–Saxton equation and in [12] for the Camassa–Holm equation in the
periodic case. In [2], the pseudometric is defined by using ideas from Riemannian
geometry. Here, we follow the approach of [12] and first introduce a pseudosemi-
metric3 which also identifies elements of the same equivalence class and leaves St
Lipschitz continuous. A natural choice, which was applied in [12], is to consider

the pseudometric J̃ defined as

(1.14) J̃(Xα, Xβ) = inf
f,g∈G

‖Xα ◦ f −Xβ ◦ g‖ .

The pseudometric J̃ identifies elements of the same equivalence class, as J̃(X,X ◦
f) = 0. Moreover, it is invariant with respect to relabeling, that is, J̃(Xα ◦ f,Xβ ◦
g) = J̃(Xα, Xβ) for any f, g ∈ G. It remains to prove that the pseudosemimetric
makes the semigroup St locally Lipschitz, that is, given M and T , there exists a
constant C depending on M and T such that

(1.15) J̃(StXα, StXβ) ≤ CJ̃(Xα, Xβ),

for all t ∈ [0, T ] and Xα, Xβ ∈ BM . The proof follows almost directly from the
stability and equivariance of St. We outline it here. For every ε > 0, there exist

2By a pseudometric we mean a map d : X ×X → [0,∞) which is symmetric, d(x, y) = d(y, x),
for which the triangle inequality d(x, y) ≤ d(x, z) + d(z, y) holds, and satisfies d(x, x) = 0 for
x, y, z ∈ X.

3By a pseudosemimetric we mean a map d : X × X → [0,∞) which is symmetric, d(x, y) =
d(y, x) and satisfies d(x, x) = 0 for x, y ∈ X.
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f, g ∈ G such that J̃(Xα, Xβ) ≥ ‖Xα ◦ f −Xβ ◦ g‖ − ε and we get

J̃(StXα, StXβ) ≤ ‖St(Xα) ◦ f − St(Xβ) ◦ g‖(1.16a)

= ‖St(Xα ◦ f)− St(Xβ ◦ g)‖ (as St is equivariant)(1.16b)

≤ CM ‖Xα ◦ f −Xβ ◦ g‖ (by (1.12))(1.16c)

≤ CM (J̃(Xα, Xβ) + ε)(1.16d)

and (1.15) follows by letting ε tend to zero. However, the use of the Lipschitz
stability of St (1.12) relies on bounds on ‖Xα ◦ f‖ and ‖Xβ ◦ g‖ that are unavailable.
The problem is that the norm ‖ · ‖ of the Banach space is not invariant with respect
to relabeling and therefore, since f and g are a priori arbitrary, we cannot obtain any
bound depending on M for ‖Xα ◦ f‖ and ‖Xβ ◦ g‖. This motivates the introduction
in this paper of the pseudosemimetric J defined as

(1.17) J(Xα, Xβ) = inf
f1,f2∈G

(
‖Xα ◦ f1 −Xβ‖+ ‖Xα −Xβ ◦ f2‖

)
.

As expected, the pseudosemimetric J identifies equivalence classes (we have J(X,X◦
f) = 0) but we lose the nice relabeling invariance property. At the same time, this
definition of J implies some implicit restrictions on the diffeomorphisms f1 and f2

which allow us to bound the relabeled versions ‖Xα ◦ f1‖ and ‖Xβ ◦ f2‖ so that
the approach sketched in (1.16) can be carried out.

It remains to explain why, in the periodic case [12], we could use the definition

of J̃ , which is a more natural definition and moreover simplifies the proofs. In the
periodic case (we take the period equal to one), the stability of the semigroup St is
established in the space W 1,1([0, 1]) equipped with the norm

(1.18) ‖U‖W 1,1([0,1]) = ‖U‖L∞([0,1]) + ‖Uξ‖L1([0,1]) .

Note that, in order to keep these formal explanations as simple as possible, we just
consider the second component of X = (y, U,H). Since ‖U ◦ f‖L∞ = ‖U‖L∞ and

‖U ◦ f‖L1 =

∫ 1

0

U ◦ ffξ dξ = ‖U‖L1

we have ‖U ◦ f‖W 1,1 = ‖U‖W 1,1 , for any f ∈ G, so that the norm defined in (1.18)
is relabeling invariant. Now, if the norm of the Banach space is relabeling invariant,
we have

(1.19) J̃(Xα, Xβ) ≤ J(Xα, Xβ) ≤ 2J̃(Xα, Xβ),

and the pseudosemimetrics J and J̃ are equivalent. However, the natural Banach
space for U is not W 1,1([0, 1]) but W 1,2([0, 1]) = H1([0, 1]). In the periodic case, it
is not an issue as H1([0, 1]) ⊂ W 1,1([0, 1]) but the corresponding embedding does
not hold in the case of the real line. This also shows that the approach that we
present here for the real line can also be used in the periodic case and that the
novelty in this article is that we handle a norm which is not relabeling invariant.

The final step consists of deriving a pseudometric from the pseudosemimetric J .
This can be achieved by the following general construction: Let

d(Xα, Xβ) = inf

N∑
i=1

J(Xn−1, Xn),

where the infimum is taken over all finite sequences {Xn}Nn=0 with X0 = Xα and
XN = Xβ . The pseudometric d inherits the Lipschitz stability property (1.15)
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from J . Finally, identifying elements belonging to the same equivalence class, the
pseudometric d turns into a metric on the set of equivalence classes. By bijection, it
yields a metric in D which makes the semigroup of conservative solutions Lipschitz
continuous.

In the last section, Section 5, we compare this new metric with the usual norms
in H1 and L∞.

2. Semigroup of solutions in Lagrangian coordinates

In this section, we recall from [13] the construction of the semigroup in La-
grangian coordinates. The Camassa–Holm equation reads

(2.1) ut − uxxt + 3uux − 2uxuxx − uuxxx = 0,

and can be rewritten as the following system

(2.2) ut + uux + Px = 0,

(2.3) P − Pxx = u2 +
1

2
u2
x.

Next, we rewrite the equation in Lagrangian coordinates. Therefore we introduce
the characteristics

(2.4) yt(t, ξ) = u(t, y(t, ξ)).

The Lagrangian velocity U reads

(2.5) U(t, ξ) = u(t, y(t, ξ)).

We define the Lagrangian cumulative energy as

(2.6) H(t, ξ) =

∫ y(t,ξ)

−∞
(u2 + u2

x)dx.

As an immediate consequence of the definition of the characteristics we obtain

(2.7) Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y) = −Px ◦ y(t, ξ).

The last term can be expressed uniquely in terms of y, U , and H. From (2.3) we
obtain the following explicit expression for P ,

(2.8) P (t, x) =
1

2

∫
R
e−|x−z|

(
u2(t, z) +

1

2
u2
x(t, z)

)
dz.

Setting Q(t, ξ) = Px(t, y(t, ξ)) and writing P (t, ξ) = P (t, y(t, ξ)), we obtain

(2.9) P (t, ξ) =
1

4

∫
R

exp(−|y(t, ξ)− y(t, η)|)(U2yξ +Hξ)(t, η)dη,

and
(2.10)

Q(t, ξ) = −1

4

∫
R

sign(y(t, ξ)− y(t, η)) exp(−|y(t, ξ)− y(t, η)|)(U2yξ +Hξ)(t, η)dη.

Moreover we introduce another variable ζ(t, ξ) = y(t, ξ)− ξ. Thus we have derived
a new system of equations, which is up to that point only formally equivalent to
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the Camassa–Holm equation:

(2.11)

ζt = U,

Ut = −Q,
Ht = U3 − 2PU.

Let V be the Banach space defined by

V = {f ∈ Cb(R) | fξ ∈ L2}

where Cb(R) = C(R)∩L∞ and the norm of V is given by ‖f‖V = ‖f‖L∞ + ‖fξ‖L2 .

Of course H1 ⊂ V but the converse is not true as V contains functions that do not
vanish at infinity. We will employ the Banach space E defined by

E = V ×H1 × V

with the following norm ‖X‖ = ‖ζ‖V +‖U‖H1(R)+‖H‖V for any X = (ζ, U,H) ∈ E.

Definition 2.1. The set G is composed of all (ζ, U,H) ∈ E such that

(ζ, U,H) ∈
[
W 1,∞]3 ,(2.12a)

yξ ≥ 0, Hξ ≥ 0, yξ +Hξ > 0 almost everywhere, and lim
ξ→−∞

H(ξ) = 0,(2.12b)

yξHξ = y2
ξU

2 + U2
ξ almost everywhere,(2.12c)

where we denote y(ξ) = ζ(ξ) + ξ.

Given a constant M > 0, we denote by BM the ball

(2.13) BM = {X ∈ E | ‖X‖ ≤M}.

Theorem 2.2. For any X̄ = (ȳ, Ū , H̄) ∈ G, the system (2.11) admits a unique
global solution X(t) = (y(t), U(t), H(t)) in C1(R+, E) with initial data X̄ = (ȳ, Ū , H̄).
We have X(t) ∈ G for all times. If we equip G with the topology induced by the
E-norm, then the mapping S : G × R+ → G defined by

St(X̄) = X(t)

is a continuous semigroup. More precisely, given M > 0 and T > 0, there exists
a constant CM which depends only on M and T such that, for any two elements
Xα, Xβ ∈ G ∩BM , we have

(2.14) ‖StXα − StXβ‖ ≤ CM ‖Xα −Xβ‖

for any t ∈ [0, T ].

Proof. We have

Xt = F (X)

where F is locally Lipschitz (see proof [13, Theorem 2.3]). It implies, by Gronwall’s
lemma, that we have

‖St(Xα)− St(Xβ)‖ ≤ C ‖Xα −Xβ‖

for t ∈ [0, T ], where the constant C only depends on supt∈[0,T ] ‖St(Xα)‖ and

supt∈[0,T ] ‖St(Xβ)‖. In [13, Theorem 2.8] it is proved that supt∈[0,T ] ‖St(Xα)‖ only

depends of ‖Xα‖ and T , and thus on M and T . �
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Definition 2.3. We denote by G the subgroup of the group of homeomorphisms
from R to R such that

f − Id and f−1 − Id both belong to W 1,∞(R),(2.15a)

fξ − 1 belongs to L2(R),(2.15b)

where Id denotes the identity function. Given κ > 0, we denote by Gκ the subset
Gκ of G defined by

Gκ = {f ∈ G | ‖f − Id‖W 1,∞(R) +
∥∥f−1 − Id

∥∥
W 1,∞(R)

≤ κ}.

The subsets Gκ do not possess the group structure of G. The next lemma
provides a useful characterization of Gκ.

Lemma 2.4 ([13, Lemma 3.2]). Let κ ≥ 0. If f belongs to Gκ, then 1/(1 + κ) ≤
fξ ≤ 1 + κ almost everywhere. Conversely, if f is absolutely continuous, f − Id ∈
W 1,∞(R), f satisfies (2.15b) and there exists c ≥ 1 such that 1/c ≤ fξ ≤ c almost
everywhere, then f ∈ Gκ for some κ depending only on c and ‖f − Id‖W 1,∞(R).

We define the subsets Fκ and F of G as follows

Fκ = {X = (y, U,H) ∈ G | y +H ∈ Gκ},

and

F = {X = (y, U,H) ∈ G | y +H ∈ G}.
For κ = 0, G0 = {Id}. As we shall see, the space F0 will play a special role. These
sets are relevant only because they are preserved by the governing equation (2.11)
as the next lemma shows. In particular, while the mapping ξ 7→ y(t, ξ) may not
be a diffeomorphism for some time t, the mapping ξ 7→ y(t, ξ) + H(t, ξ) remains a
diffeomorphism for all times t.

Lemma 2.5. The space F is preserved by the governing equation (2.11). More
precisely, given κ, T ≥ 0, there exists κ′ which only depends on T , κ and

∥∥X̄∥∥ such
that

St(X̄) ∈ Fκ′
for any X̄ ∈ Fκ.

Proof. Let X̄ = (ȳ, Ū , H̄) ∈ Fκ, we denote by X(t) = (y(t), U(t), H(t)) the solution
of (2.11) with initial data X̄ and set h(t, ξ) = y(t, ξ) + H(t, ξ), h̄(ξ) = ȳ(ξ) +
H̄(ξ). By definition, we have h̄ ∈ Gκ and, from Lemma 2.4, 1/c ≤ h̄ξ ≤ c almost
everywhere, for some constant c > 1 depending only on κ. We consider a fixed ξ
and drop it in the notation. Applying Gronwall’s inequality backward in time to
(2.11) we obtain

(2.16) |yξ(0)|+ |Hξ(0)|+ |Uξ(0)| ≤ eCT (|yξ(t)|+ |Hξ(t)|+ |Uξ(t)|),

for some constant C which depends on ‖X(t)‖C([0,T ],E), which itself depends only

on
∥∥X̄∥∥ and T . From (2.12c), we have

(2.17) |Uξ(t)| ≤
√
yξ(t)Hξ(t) ≤

1

2
(yξ(t) +Hξ(t)).

Hence, since yξ and Hξ are positive, (2.16) gives us

(2.18)
1

c
≤ ȳξ + H̄ξ ≤

3

2
eCT (yξ(t) +Hξ(t)),
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and hξ(t) = yξ(t) +Hξ(t) ≥ 2
3ce
−CT . Similarly, by applying Gronwall’s lemma for-

ward in time, we obtain yξ(t) +Hξ(t) ≤ 3
2c eCT . We have ‖(y +H)(t)− ξ‖L∞(R) ≤

‖X(t)‖C([0,T ],E) ≤ C and ‖yξ +Hξ − 1‖L2 ≤ ‖ζξ‖L2 + ‖Hξ‖L2 ≤ C for another

constant C which only depends on
∥∥X̄∥∥ and T . Hence, applying Lemma 2.4, we

obtain that y(t, · ) +H(t, · ) ∈ Gκ′ and therefore X(t) ∈ Fκ′ for some κ′ depending
only on κ, T , and

∥∥X̄∥∥. �

For the sake of simplicity, for any X = (y, U,H) ∈ F and any function f ∈ G,
we denote (y ◦ f, U ◦ f,H ◦ f) by X ◦ f . This operation corresponds to relabeling.

Definition 2.6. We denote by Π(X) the projection of F into F0 defined as

Π(X) = X ◦ (y +H)−1

for any X = (y, U,H) ∈ F .

The element Π(X) is the unique relabeled version of X that belongs to F0.

Lemma 2.7. The mapping St is equivariant, that is,

St(X ◦ f) = St(X) ◦ f.

This follows from the governing equation and the equivariance of the mappings
X 7→ P (X) and X 7→ Q(X), where P and Q are defined in (2.9) and (2.10), see
[13] for more details. From this lemma we get that

(2.19) Π ◦ St ◦Π = Π ◦ St.

Definition 2.8. We define the semigroup S̄t on F0 as

S̄t = Π ◦ St.

The semigroup property of S̄t follows from (2.19). From [13], we know that S̄t is
continuous with respect to the norm of E. It follows basically from the continuity of
the mapping Π, but Π is not Lipschitz continuous and the goal of the next section
is to find a metric that makes S̄t Lipschitz continuous.

Remark 2.9. The details of the construction of the semigroup of solutions in
Lagrangian coordinates for the generalized hyperelastic-rod equation (1.3) is given
in [15]. The construction is based on a reformulation of the equation in Lagrangian
coordinates which leads to a semilinear system of equations, similar to (2.11) for the
Camassa–Holm equation. In the case of the generalized hyperelastic-rod equation,
the equation can be rewritten as

(2.20)


ζt = f ′(U),

Ut = −Q,
Ht = G(U)− 2PU,

where G(v) is given by

(2.21) G(v) =

∫ v

0

(2g(z) + f ′′(z)z2) dz,

and

(2.22) Q(t, ξ) = −1

2

∫
R

sign(ξ − η) exp
(
− sign(ξ − η)(y(ξ)− y(η))

)
×
((
g(U)− 1

2
f ′′(U)U2

)
yξ +

1

2
f ′′(U)Hξ

)
(η) dη,
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(2.23) P (t, ξ) =
1

2

∫
R

exp
(
− sign(ξ − η)(y(ξ)− y(η))

)
×
((
g(U)− 1

2
f ′′(U)U2

)
yξ +

1

2
f ′′(U)Hξ

)
(η) dη.

Section 2 outlines the construction of the semigroup of solutions in Lagrangian co-
ordinates. The construction of the metric in Eulerian coordinates, which is given
in the following sections, relies basically on two fundamental results of this section:
The Lipschitz stability of the semigroup of solution in Lagrangian coordinates (The-
orem 2.2) and the equivariance of the semigroup (Lemma 2.7). The same results
hold for the generalized hyperelastic-rod equation, see [15, Theorem 2.8 and Theo-
rem 3.6] so that it is possible to define a Lipschitz stable metric for this equation in
the same way as we do it for the CH equation.

3. Lipschitz metric for the semigroup S̄t

Definition 3.1. Let Xα, Xβ ∈ F , we define J(Xα, Xβ) as

(3.1) J(Xα, Xβ) = inf
f1,f2∈G

(
‖Xα ◦ f1 −Xβ‖+ ‖Xα −Xβ ◦ f2‖

)
.

The mapping J is symmetric. Moreover, if Xα and Xβ are equivalent, then
J(Xα, Xβ) = 0. Our goal is to create a distance between equivalence classes,

and that is the reason why we introduce the pseudosemimetric J̃ as follows in the
periodic case ([12]).

Definition 3.2. Let Xα, Xβ ∈ F , we define J̃(Xα, Xβ) as

J̃(Xα, Xβ) = inf
f,g∈G

‖Xα ◦ f −Xβ ◦ g‖ .

The pseudosemimetric J̃ is relabeling invariant, that is, J̃(Xα ◦ f,Xβ ◦ g) =

J̃(Xα, Xβ). With Definition 3.1, we lose this important property. However, Defi-
nition 3.1 allows us to obtain estimates that cannot be obtained by Definition 3.2,
see the proof of Theorem 3.10. In addition, it turns out that we do not actually
need the relabeling invariance property to hold strictly and the estimates contained
in the following lemma are enough for our purpose.

Lemma 3.3. Given Xα, Xβ ∈ F and f ∈ Gκ, we have

(3.2) ‖Xα ◦ f −Xβ ◦ f‖ ≤ C ‖Xα −Xβ‖
so that

(3.3) J(Xα ◦ f,Xβ) ≤ CJ(Xα, Xβ)

for some constant C which depends only on κ.

Proof. Let us prove (3.2). Let X̄α = Xα ◦ f and X̄β = Xβ ◦ f . We have ζ̄α =
ȳα − Id and ζ̄β = ȳβ − Id so that

∥∥ζ̄α − ζ̄β∥∥L∞ = ‖ȳα − ȳβ‖L∞ = ‖yα − yβ‖L∞ =

‖ζα − ζβ‖L∞ . Hence,
∥∥X̄α − X̄β

∥∥
L∞

= ‖Xα −Xβ‖L∞ . By definition we have

ȳα(ξ) = yα(f(ξ)) = f(ξ)+ζα(f(ξ)) = ξ+ζ̄α(ξ) and hence ζ̄α(ξ) = ζα(f(ξ))+f(ξ)−ξ.
Thus ∥∥ζ̄α,ξ − ζ̄β,ξ∥∥2

L2 = ‖ζα,ξ ◦ ffξ − ζβ,ξ ◦ ffξ‖2L2

=

∫
R

(ζα,ξ − ζβ,ξ)2(f(ξ))f2
ξ (ξ) dξ
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≤ (1 + κ)

∫
R

(ζα,ξ − ζβ,ξ)2(f(ξ))fξ(ξ) dξ

≤ (1 + κ)

∫
R

(ζα,ξ − ζβ,ξ)2(ξ) dξ

≤ (1 + κ) ‖ζα,ξ − ζβ,ξ‖L2

so that
∥∥X̄α,ξ − X̄β,ξ

∥∥
L2 ≤ C ‖Xα,ξ −Xβ,ξ‖L2 . We have∥∥Ūα − Ūβ∥∥2

L2 =

∫
R

(Uα − Uβ)2 ◦ f(ξ) dξ

≤ (1 + κ)

∫
R

(Uα − Uβ)2 ◦ ffξ dξ = (1 + κ) ‖Uα − Uβ‖2L2 .(3.4)

This concludes the proof of (3.2). For any f ∈ Gκ and any f1, f2 ∈ G, we have

J(Xα ◦ f,Xβ) ≤ ‖Xα ◦ f ◦ f1 −Xβ‖+ ‖Xα ◦ f −Xβ ◦ f2‖
≤ ‖Xα ◦ f ◦ f1 −Xβ‖+ C

∥∥Xα −Xβ ◦ f2 ◦ f−1
∥∥ .

Hence, after taking C ≥ 1,

J(Xα ◦ f,Xβ) ≤ C(‖Xα ◦ f ◦ f1 −Xβ‖+
∥∥Xα −Xβ ◦ f2 ◦ f−1

∥∥),

which implies, after taking the infimum,

J(Xα ◦ f,Xβ) ≤ C inf
f1,f2∈G

(
‖Xα ◦ f1 −Xβ‖+ ‖Xα −Xβ ◦ f2‖

)
.

�

From the pseudosemimetric J , we obtain a metric d by the following construction.

Definition 3.4. Let Xα, Xβ ∈ F0, we define d(Xα, Xβ) as

(3.5) d(Xα, Xβ) = inf

N∑
i=1

J(Xn−1, Xn)

where the infimum is taken over all sequences {Xn}Nn=0 ∈ F0 which satisfy X0 = Xα

and XN = Xβ.

Lemma 3.5. For any Xα, Xβ ∈ F0, we have

(3.6) ‖Xα −Xβ‖L∞ ≤ 2d(Xα, Xβ).

Proof. First, we prove that, for any Xα, Xβ ∈ F0, we have

(3.7) ‖Xα −Xβ‖L∞ ≤ 2J(Xα, Xβ).

We have

‖Xα −Xβ‖L∞ ≤ ‖Xα −Xα ◦ f‖L∞ + ‖Xα ◦ f −Xβ‖L∞
≤ ‖Xα,ξ‖L∞ ‖f − Id‖L∞ + ‖Xα ◦ f −Xβ‖L∞ .(3.8)

It follows from the definition of F0 that 0 ≤ yξ ≤ 1, 0 ≤ Hξ ≤ 1 and |Uξ| ≤ 1 so
that ‖Xα,ξ‖L∞ ≤ 3. We also have

‖f − Id‖L∞ = ‖(yα +Hα) ◦ f − (yβ +Hβ)‖L∞ ≤ ‖Xα ◦ f −Xβ‖L∞ .

Hence, from (3.8), we get

‖Xα −Xβ‖L∞ ≤ 4 ‖Xα ◦ f −Xβ‖L∞ .
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In the same way, we obtain ‖Xα −Xβ‖L∞ ≤ 4 ‖Xα −Xβ ◦ f‖L∞ for any f ∈ G.
After adding these two last inequalities and taking the infimum, we get (3.7). For
any ε > 0, we consider a sequence {Xn}Nn=0 ∈ F0 such that X0 = Xα and XN = Xβ

and
∑N
i=1 J(Xn−1, Xn) ≤ d(Xα, Xβ) + ε. We have

‖Xα −Xβ‖L∞ ≤
N∑
n=1

‖Xn−1 −Xn‖L∞

≤ 2

N∑
n=1

J(Xn−1, Xn)

≤ 2(d(Xα, Xβ) + ε).

After letting ε tend to zero, we get (3.6). �

Lemma 3.6. The mapping d : F0×F0 → R+ is a distance on F0, which is bounded
as follows

(3.9)
1

2
‖Xα −Xβ‖L∞ ≤ d(Xα, Xβ) ≤ 2 ‖Xα −Xβ‖ .

Proof. The symmetry is embedded in the definition of J while the construction
of d from J takes care of the triangle inequality. From Lemma 3.5, we get that
d(Xα, Xβ) = 0 implies Xα = Xβ . The first inequality in (3.9) follows from Lemma
3.5 while the second one follows from the definition of J and d. Indeed, we have

d(Xα, Xβ) ≤ J(Xα, Xβ) ≤ 2 ‖Xα −Xβ‖ .

�

We need to introduce the subsets of bounded energy in F0. Note that the total
energy is equal to H(∞)−H(−∞) = ‖H‖L∞ as H(−∞) = 0 and H is increasing,
see Definition 2.1.

Definition 3.7. We denote by FM the set

FM = {X = (y, U,H) ∈ F | ‖H‖L∞ ≤M}

and

FM0 = F0 ∩ FM .

The ball BM (see (2.13)) is not preserved by the equation while the set FM is
preserved because of the conservation of energy, namely,

‖H(t, ·)‖L∞ = lim
ξ→∞

H(t, ξ) = lim
ξ→∞

H(0, ξ) = ‖H(0, ·)‖L∞ .

The set FM is also conserved by relabeling as, for any f ∈ G, ‖H ◦ f‖L∞ = ‖H‖L∞ .
The ball BM is included in FM but the reverse inclusion does not hold. However,
as the next lemma shows, when we restrict ourselves to F0, the sets F0 ∩ FM and
F0 ∩BM are in fact equivalent.

Lemma 3.8. For any element X ∈ FM0 , we have

(3.10) F0 ∩BM ⊂ FM0 ⊂ BM̄
for some constant M̄ depending only on M .
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Proof. Since yξ + Hξ = 1, Hξ ≥ 0, yξ ≥ 0, we get 0 ≤ Hξ ≤ 1 and 0 ≤ yξ ≤ 1.

Hence, ‖Hξ‖2L2 ≤
∫
RHξ dξ = H(∞) ≤ M . Since ζ = −H, we get ‖ζξ‖L2 ≤ M .

By (2.12c), we get U2
ξ ≤ yξHξ and therefore

∫
R U

2
ξ dξ ≤ H(∞) ≤ M . Finally, we

have to show that ‖U‖L2 ≤ C(M). Therefore observe that by (2.12c),
∫
R U

2yξdξ ≤∫
RHξdξ ≤M . This together with the fact that X ∈ F0 yields∫

R
U2dξ =

∫
R
U2yξdξ +

∫
R
U2Hξdξ ≤M(1 + ‖U‖2L∞).

Thus it is left to estimate ‖U‖L∞ , which can be done as follows,

U2(ξ) = 2

∫ ξ

−∞
U(η)Uξ(η)dη = 2

∫
{η≤ξ|yξ(η)>0}

U(η)Uξ(η)dη,

where we used that Uξ(ξ) = 0, when yξ(ξ) = 0 by (2.12c). For almost every ξ such
that yξ(ξ) > 0, we have

|U(ξ)Uξ(ξ)| = |
√
yξ(ξ)U(ξ)

Uξ(ξ)√
yξ(ξ)

| ≤ 1

2

(
U2(ξ)yξ(ξ) +

U2
ξ (ξ)

yξ(ξ)

)
≤ 1

2
Hξ(ξ),

from (2.12c) and hence ‖U‖2L∞ ≤M and ‖U‖2L2 ≤M(1 +M). �

Definition 3.9. Let dM be the distance on FM0 which is defined, for any Xα, Xβ ∈
FM0 , as

dM (Xα, Xβ) = inf

N∑
n=1

J(Xn−1, Xn)

where the infimum is taken over all the sequences {Xn}Nn=0 ∈ FM0 which satisfy
X0 = Xα and XN = Xβ.

We can now prove our main stability theorem.

Theorem 3.10. Given T > 0 and M > 0, there exists a constant CM which
depends only on M and T such that, for any Xα, Xβ ∈ FM0 and t ∈ [0, T ], we have

(3.11) dM (S̄tXα, S̄tXβ) ≤ CMdM (Xα, Xβ).

Proof. By the definition of dM , for any ε such that 0 < ε ≤ 1 there exists a sequence
{Xn}Nn=0 in FM0 such that X0 = Xα, XN = Xβ ,

N∑
n=1

J(Xn−1, Xn) ≤ dM (Xα, Xβ) + ε.

Hence, there exist functions {fn}N−1
n=0 , {f̃n}Nn=1 in G such that

(3.12)

N∑
n=1

(‖Xn−1 ◦ fn−1 −Xn‖+ ‖Xn−1 −Xn ◦ f̃n‖) ≤ dM (Xα, Xβ) + 2ε.

Let us denote

Xt
n = St(Xn), gtn = ytn +Ht

n, X̄t
n = S̄tXn = Π(Xt

n) = Xt
n ◦ (gtn)−1.

By Lemma 2.5, we have gtn ∈ Gκ for some κ which depends only on M and T .
The sequence {X̄t

n} has endpoints given by S̄t(Xα) and S̄t(Xβ). Since Xn ∈ FM
and the set FM is preserved by the flow of the equation and relabeling, we have
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X̄t
n ∈ F0 ∩ FM = FM0 so that the sequence {X̄t

n} is in FM0 , as required in the
definition of dM . For f tn−1 = gtn−1 ◦ fn−1 ◦ (gtn)−1, we have∥∥X̄t

n−1 ◦ f tn−1 − X̄t
n

∥∥ =
∥∥Xt

n−1 ◦ (gtn−1)−1 ◦ f tn−1 −Xt
n ◦ (gtn)−1

∥∥
≤ CM

∥∥Xt
n−1 ◦ (gtn−1)−1 ◦ f tn−1 ◦ (gtn)−Xt

n

∥∥ (by (3.2))

= CM
∥∥Xt

n−1 ◦ fn−1 −Xt
n

∥∥
= CM ‖St(Xn−1) ◦ fn−1 − St(Xn)‖
= CM ‖St(Xn−1 ◦ fn−1)− St(Xn)‖ (by the equivariance of St).(3.13)

To use the stability result (2.14), we have to bound ‖Xn−1 ◦ fn−1‖ and ‖Xn‖.
By Lemma 3.8, there exists M̄ such that ‖X‖ ≤ M̄ for any X ∈ FM0 . Hence,
‖Xn‖ ≤ M̄ as Xn ∈ FM0 . Since fn−1 is a priori arbitrary, it may seem difficult to
bound ‖Xn ◦ fn−1‖, and it is important to note here that the relabeling invariant

pseudosemimetric J̃ , see (1.14), would not provide us with a bound on this term
and the following estimates in fact motivate the Definition 3.1. Indeed, by (3.1),
we obtain (3.12) which yields

‖Xn−1 ◦ fn −Xn‖ ≤ dM (Xα, Xβ) + 2

≤ 2 ‖Xα −Xβ‖+ 2 (by (3.9))

≤ 4M̄ + 2,

as Xα, Xβ ∈ FM0 . Therefore, by the triangle inequality, ‖Xn−1 ◦ fn‖ ≤ 5M̄ + 2
so that ‖Xn−1 ◦ fn‖ and ‖Xn‖ are bounded by a constant depending only on M .
Thus, we can use (2.14) and get from (3.13) that∥∥X̄t

n−1 ◦ f tn−1 − X̄t
n

∥∥ ≤ CM ‖Xn−1 ◦ fn−1 −Xn‖ ,
where from now on CM denotes some constant dependent on M and T . Similarly
for f̃ tn = gtn ◦ f̃n ◦ (gtn−1)−1, we get that∥∥∥X̄t

n−1 − X̄t
n ◦ f̃ tn

∥∥∥ ≤ CM ∥∥∥Xn−1 −Xn ◦ f̃n
∥∥∥ .

Finally, we have

dM (S̄tXα, S̄tXβ) ≤
N∑
n=1

(
∥∥X̄t

n−1 ◦ f tn−1 −Xn

∥∥+ ‖X̄t
n−1 − X̄t

n ◦ f̃ tn‖)

≤ CM
N∑
n=1

(‖Xn−1 ◦ fn−1 −Xn‖+ ‖Xn−1 −Xn ◦ f̃n‖)

≤ CM (dM (Xα, Xβ) + 2ε).

The result follows by letting ε tend to zero. �

4. From Lagrangian to Eulerian coordinates

We now introduce a second set of coordinates, the so–called Eulerian coordi-
nates. Therefore let us first consider X = (y, U,H) ∈ F . We can define Eulerian
coordinates as in [13] and also obtain the same mappings between Eulerian and La-
grangian coordinates (see also Figure 2). For completeness we will state the results
here.

Definition 4.1. The set D consists of all pairs (u, µ) such that
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Figure 2. A schematic illustration of the construction of the semi-
group. The set F where the Lagrangian variables are defined is
represented by the interior of the closed domain on the left. The
equivalence classes [X] and [X0] (with respect to the action of the
relabeling group G) of X and X0, respectively, are represented by
the horizontal curves. To each equivalence class there corresponds
a unique element in F0 and D (the set of Eulerian variables). The
sets F0 and D are represented by the vertical curves.

(i) u ∈ H1(R), and
(ii) µ is a positive Radon measure whose absolutely continuous part µac satis-

fies

(4.1) µac = u2 + u2
x.

We can define a mapping, denoted by L, from D to F0:

Definition 4.2. For any (u, µ) in D let,

(4.2)


y(ξ) = sup{y | µ((−∞, y)) + y < ξ},
H(ξ) = ξ − y(ξ),

U(ξ) = u ◦ y(ξ).

Then (y, U,H) ∈ F0, and we denote by L : D → F0 the map which to any (u, µ)
associates X ∈ F0.

Thus from any initial data (u0, µ0) ∈ D, we can construct a solution of (2.11)
in F with initial data X0 = L(u0, µ0) ∈ F0. It remains to go back to the original
variables, which is the purpose of the mapping M defined as follows:

Definition 4.3. Given any element X in F0, then (u, µ) defined as follows

(4.3) u(x) = U(ξ) for any ξ such that x = y(ξ),

(4.4) µ = y#(νdξ),

belongs to D. We denote by M : F0 → D the map which to any X in F0 associates
(u, µ).
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In fact, M can be seen as a map from F/G → D, as any two elements be-
longing to the same equivalence class in F are mapped to the same element in D
(cf. [13]). Moreover, identifying elements belonging to the same equivalence class,
the mappings L and M are invertible and

(4.5) L ◦M = IdF/G, and M ◦ L = IdD .

We will now use these mappings for defining also a Lipschitz metric on D.

Definition 4.4. Let

(4.6) Tt := MStL : D → D.

Next we show that Tt is a Lipschitz continuous semigroup by introducing a metric
on D. Using the map L we can transport the topology from F0 to D.

Definition 4.5. Define the metric dD : D ×D → [0,∞) by

(4.7) dD((u, µ), (ũ, µ̃)) = d(L(u, µ), L(ũ, µ̃)).

The Lipschitz stability of the semigroup Tt follows then naturally from Theo-
rem 3.10. It holds on sets of bounded energy, which are given as follows.

Definition 4.6. Given M > 0, we define the subsets DM of D, which correspond
to sets of bounded energy, as

(4.8) DM = {(u, µ) ∈ D | µ(R) ≤M}.
On the set DM we define the metric dDM as

(4.9) dDM ((u, µ), (ũ, µ̃)) = dM (L(u, µ), L(ũ, µ̃)),

where the metric dM is defined as in Definition 3.9.

Definition 4.6 is well-posed as we can check from the definition of L: If (u, µ) ∈
DM , then L(u, µ) ∈ FM0 .

Theorem 4.7. The semigroup (Tt, dD) is a continuous semigroup on D with respect
to the metric dD. The semigroup is Lipschitz continuous on sets of bounded energy,
that is: Given M > 0 and a time interval [0, T ], there exists a constant CM , which
only depends on M and T such that for any (u, µ) and (ũ, µ̃) in DM , we have

(4.10) dDM (Tt(u, µ), Tt(ũ, µ̃)) ≤ CMdDM ((u, µ), (ũ, µ̃))

for all t ∈ [0, T ].

Proof. First we prove that Tt is a semigroup. Since S̄t is a mapping from F0 to F0,
we have

TtTt′ = MS̄tLMS̄t′L = MS̄tS̄t′L = MS̄t+t′L = Tt+t′

where we also used (4.5) and the semigroup property of S̄t. We now prove the
Lipschitz continuity of Tt. By using Theorem 3.10, we obtain that

dDM (Tt(u, µ), Tt(ũ, µ̃)) = dM (LMS̄tL(u, µ)LMS̄tL(ũ, µ̃))

= dM (S̄tL(u, µ), S̄tL(ũ, µ̃))

≤ CMdM (L(u, µ), L(ũ, µ̃))(4.11)

= CMdDM ((u, µ), (ũ, µ̃)).

�

By a weak solution of the Camassa–Holm equation we mean the following.
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Definition 4.8. Let u : R× R→ R that satisfies

(i) u ∈ L∞([0,∞), H1(R)),
(ii) the equations

(4.12)∫∫
R+×R

−u(t, x)φt(t, x)+(u(t, x)ux(t, x)+Px(t, x))φ(t, x)dxdt =

∫
R
u(0, x)φ(0, x)dx,

and

(4.13)

∫∫
R+×R

(P (t, x)− u2(t, x)− 1

2
u2
x(t, x))φ(t, x) + Px(t, x)φx(t, x)dxdt = 0,

hold for all φ ∈ C∞0 ([0,∞),R). Then we say that u is a weak global solution of the
Camassa–Holm equation.

Theorem 4.9. Given any initial condition (u0, µ0) ∈ D, we denote (u, µ)(t) =
Tt(u0, µ0). Then u(t, x) is a weak, global solution of the Camassa–Holm equation.

Proof. After making the change of variables x = y(t, ξ) we get on the one hand

−
∫∫

R+×R
u(t, x)φt(t, x)dxdt = −

∫∫
R+×R

u(t, y(t, ξ))φt(t, y(t, ξ))yξ(t, ξ)dξdt

= −
∫∫

R+×R
U(t, ξ)[(φ(t, y(t, ξ))t − φx(t, y(t, ξ)))yt(y, ξ)]yξ(t, ξ)dξdt

= −
∫∫

R+×R
[U(t, ξ)yξ(t, ξ)(φ(t, y(t, ξ)))t − φξ(t, y(t, ξ))U(t, ξ)2]dξdt

=

∫
R
U(0, ξ)φ(0, y(0, ξ))yξ(0, ξ)dξ(4.14)

+

∫∫
R+×R

[Ut(t, ξ)yξ(t, ξ) + U(t, ξ)yξt(t, ξ)]φ(t, y(t, ξ))dξdt

+

∫∫
R+×R

U2(t, ξ)φξ(t, y(t, ξ))dξdt

=

∫
R
u(0, x)φ(0, x)dx

−
∫∫

R+×R
(Q(t, ξ)yξ(t, ξ) + Uξ(t, ξ)U(t, ξ))φ(t, y(t, ξ))dξdt,

while on the other hand∫∫
R+×R

(u(t, x)ux(t, x) + Px(t, x))φ(t, x)dxdt

=

∫∫
R+×R

(U(t, ξ)Uξ(t, ξ) + Px(t, y(t, ξ))yξ(t, ξ))φ(t, y(t, ξ))dξdt(4.15)

=

∫∫
R+×R

(U(t, ξ)Uξ(t, ξ) +Q(t, ξ)yξ(t, ξ))φ(t, y(t, ξ))dξdt,

which shows that (4.12) is fulfilled. Equation (4.13) can be shown analogously∫∫
R+×R

Px(t, x)φx(t, x)dxdt
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=

∫∫
R+×R

Q(t, ξ)yξ(t, ξ)φx(t, y(t, ξ))dξdt

=

∫∫
R+×R

Q(t, ξ)φξ(t, y(t, ξ))dξdt(4.16)

= −
∫∫

R+×R
Qξ(t, ξ)φ(t, y(t, ξ))dξdt

=

∫∫
R+×R

[
1

2
Hξ(t, ξ) + (

1

2
U2(t, ξ)− P (t, ξ))yξ(t, ξ)]φ(t, y(t, ξ))dξdt

=

∫∫
R+×R

[
1

2
u2
x(t, x) + u2(t, x)− P (t, x)]φ(t, x)dxdt.

In the last step we used the following∫
R
u2 + u2

xdx =

∫
R
u2 ◦ yyξ + u2

ξ ◦ yyξdξ(4.17)

=

∫
{ξ∈R|yξ(t,ξ)>0}

U2yξ +
U2
ξ

yξ
dξ =

∫
R
Hξdξ.

For almost every t ∈ R+ the set {ξ ∈ R | yξ(t, ξ) > 0} is of full measure and hence

(4.18)

∫
R
u2 + u2

xdx =

∫
R
Hξdξ,

which is bounded by a constant for all times. Thus we proved that u is a weak
solution of the Camassa–Holm equation. �

5. The topology on D

Proposition 5.1. The mapping

(5.1) u 7→ (u, (u2 + u2
x)dx)

is continuous from H1(R) into D. In other words, given a sequence un ∈ H1(R)
converging to u ∈ H1(R), then (un, (u

2
n + u2

nx)dx) converges to (u, (u2 + u2
x)dx) in

D.

Proof. LetXn = (yn, Un, Hn) = L(un, (u
2
n+u2

nx)dx) andX = (y, U,H) = L(u, (u2+
u2
x)dx). Then as in the proof of [13, Proposition 5.1] one can show that

(5.2) Xn → X in E.

Hence using (3.9), we get that limn→∞ d(Xn, X) = 0. �

Proposition 5.2. Let (un, µn) be a sequence in D that converges to (u, µ) in D.
Then

(5.3) un → u in L∞(R) and µn
∗
⇀ µ.

Proof. Let Xn = (yn, Un, Hn) = L(un, µn) and X = (y, U,H) = L(u, µ) . By
the definition of the metric dD, we have limn→∞ d(Xn, X) = 0. Using (3.9), we
immediately obtain that

(5.4) Xn → X in L∞(R).

The rest can be proved as in [13, Proposition 5.2]. �
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