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Abstract. The Camassa–Holm equation ut−uxxt +3uux−2uxuxx−uuxxx = 0 enjoys special

solutions of the form u(x, t) =
Pn

i=1 pi(t)e
−|x−qi(t)|, denoted multipeakons, that interact in a

way similar to that of solitons. We show that given initial data u|t=0 = u0 in H1(R) such

that u − uxx is a positive Radon measure, one can construct a sequence of multipeakons that
converges in L∞loc(R, H1

loc(R)) to the unique global solution of the Camassa–Holm equation. The

approach also provides a convergent, energy preserving nondissipative numerical method which
is illustrated on several examples.

1. Introduction

The Camassa–Holm equation (CH) [4, 5]

(1.1) ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0

has received considerable attention the last decade. With κ positive it models, see [14], propaga-
tion of unidirectional gravitational waves in a shallow water approximation, with u representing
the fluid velocity. The Camassa–Holm equation possesses many intriguing properties: It is, for
instance, completely integrable and experiences wave breaking in finite time for a large class of
initial data. In this article we consider the case κ = 0 on the real line, that is,

(1.2) ut − uxxt + 3uux − 2uxuxx − uuxxx = 0,

and henceforth we refer to (1.2) as the Camassa–Holm equation.
Local and global well-posedness results as well as results concerning breakdown are proved in

[8, 12, 16, 17]. It is known that certain initial data give global solutions, while other classes of
initial data experience wave breaking in the sense that ux becomes unbounded while the solution
itself remains bounded. More precisely, the fundamental existence theorem, due to Constantin,
Escher and Molinet [8, 9], reads as follows: If u0 ∈ H1(R) and m0 := u0 − u′′0 is a positive Radon
measure, then equation (1.2) has a unique global weak solution u ∈ C([0, T ),H1(R)) for any T
positive with initial data u0. However, any solution with odd initial data u0 in H3(R) such that
u0,x(0) < 0 blows up in a finite time ([8]).

The Camassa–Holm equation (1.2) exhibits so-called multipeakon solutions (see [5]), i.e., solu-
tions of the form

u(x, t) =
n∑

i=1

pi(t)e−|x−qi(t)|

where pi and qi are solutions of the following system of ordinary differential equations

(1.3)

q̇i =
n∑

j=1

pje
−|qi−qj |,

ṗi =
n∑

j=1

pipj sgn(qi − qj)e−|qi−qj |.
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The main idea in this article is to use multipeakons to approximate solutions of the Camassa–Holm
equation. This gives rise to a numerical scheme for which we prove convergence.

In [5], Camassa, Holm, and Hyman use a pseudospectral method to solve (1.2) numerically
but they do not study convergence of the method. We have shown in [13] how a particular finite
difference scheme converges to the unique global solution in the case with periodic initial data.

The idea of using multipeakons has also been used by Camassa, Huang, and Lee in [3, 7, 6]. In
[3], Camassa reformulates equation (1.2) in term of characteristics. The characteristics q(ξ, t) are
defined as solutions of the equation

qt(ξ, t) = u(q(ξ, t), t)

with initial condition q(ξ, 0) = ξ. After introducing the auxiliary variable p, which is called
momentum, by

p(ξ, t) = (u− uxx)(q(ξ, t), t)
∂q

∂ξ
(ξ, t),

Camassa shows that (1.2) reduces to the following system of partial differential equations

(1.4)
qt(ξ, t) =

1
2

∫ ∞

−∞
exp (− |q(ξ, t)− q(η, t)|) p(η, t) dη,

pt(ξ, t) =
1
2
p(ξ, t)

∫ ∞

−∞
sgn(ξ − η) exp (− |q(ξ, t)− q(η, t)|) p(η, t) dη.

In [7, 6], Camassa, Huang, and Lee discretize system (1.4) by considering a finite number n of
“particles” whose positions and momenta are given by

qi(t) = q(ξi, t) pi = p(ξi, t)

for some equidistributed ξi. By approximating the integrals in (1.4) by their Riemann sums,
equation (1.4) reduces to the system of ordinary differential equations given by (1.3). For initial
data such that pi > 0, (1.3) has global solutions in time. In this case they show that the scheme is
convergent in the following sense. Let p and q be solutions of (1.4) and {pi(t)}n

i=1 and {qi(t)}n
i=1

be solutions of (1.3) with initial conditions pi(0) = p(ξi, 0) and qi(0) = q(ξi, 0). Then, when the
number of particles n increases, {pi(t)}n

i=1 and {qi(t)}n
i=1 converge uniformly for any time interval

[0, T ] to {p(ξi, t)}n
i=1 and {q(ξi, t)}n

i=1 in some discrete l1 norm.
The approach we adopt here is different, and we obtain a more general convergence result, see

Theorem 3.1. However, the numerical method, which is based on solving (1.3), is the same. We
consider distributional solutions of (1.2), and show first that multipeakons are indeed distributional
solutions. Given general initial data for (1.2), we construct a sequence of multipeakons and prove
that it converges to the exact solution of the equation when the number of peakons is increased
appropriately. More precisely, we prove that, given u0 ∈ H1(R) such that u0 − u0,xx is a positive
Radon measure, there exists a sequence of multipeakons that converges in L∞loc(R,H1

loc(R)) to the
solution of the Camassa–Holm equation with initial data u0. The proofs extend to the periodic
case as well. Our proofs are constructive in the sense that we provide an explicit method, either
by a collocation method or by a minimization technique (see Proposition 3.2 and Remark 3.4) to
construct the multipeakon approximation. This gives a constructive proof of existence of solutions
to the Camassa–Holm equation in the case where the initial data satisfy the condition mentioned
above. Furthermore, this leads to a numerical method which, in contrast to the finite difference
scheme presented in [13], does not contain any dissipation and preserves the H1(R) norm exactly.
In the last section we illustrate the method on two numerical examples.

2. Global existence of multipeakon solutions

The Camassa–Holm equation may be rewritten as

(2.1) mt + umx + 2mux = 0

where the momentum m equals u− uxx.
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Definition 2.1. We say that u in L1
loc([0, T ),H1

loc) is a weak solution of the Camassa–Holm
equation if it satisfies

(2.2) ut − uxxt +
3
2
(u2)x +

1
2
(u2

x)x −
1
2
(u2)xxx = 0

in the sense of distributions.

When u is smooth, (2.1) and (2.2) are equivalent. Multipeakons are solutions of the form

(2.3) u(x, t) =
n∑

i=1

pi(t)e−|x−qi(t)|,

which are continuous and piecewise C∞ functions in H1(R) for any given t. But since they have
discontinuous first derivative, they cannot satisfy the Camassa–Holm equation in the classical
sense. For functions with these properties the left-hand side of (2.2) is a distribution which
consists of regular terms (piecewise C∞ functions) and singular terms (Dirac functions or their
derivatives at the points qi) that we can compute explicitely. We only give the details of the
computation of the last term, (u2)xxx, in (2.2), the other terms being obtained similarly. For each
i ∈ {0, . . . , n+ 1} we introduce the function

ui(x, t) =
i∑

j=1

pj(t)e−(x−qj(t)) +
n∑

j=i+1

pj(t)e(x−qj(t))

which is C∞ in the space variable. Then (2.3) can be rewritten as

u(x, t) =
n∑

i=0

ui(x, t)χi(x)

where χi denotes the characteristic function of the interval [qi, qi+1) with the convention that
q0 = −∞ and qn+1 = ∞. Since the χi have disjoint supports, we have

(2.4) u2 =
n∑

i=0

u2
iχi

and, after differentiating (2.4),

(u2)x =
n∑

i=0

(u2
i )xχi +

n∑
i=1

u2
i (qi)δqi −

n−1∑
i=0

u2
i (qi+1)δqi+1

=
n∑

i=0

(u2
i )xχi +

n∑
i=1

(
u2

i (qi)− u2
i−1(qi)

)
δqi

=
n∑

i=0

(u2
i )xχi +

n∑
i=1

[
u2

]
qi
δqi

(2.5)

where the bracket [v]qi
denotes the jump of v across qi, that is, [v]qi

= v(q+i )− v(q−i ). Since u is
continuous,

[
u2

]
qi

= 0, and the last term in (2.5) vanishes. We differentiate (2.5) and get

(u2)xx =
n∑

i=0

(u2
i )xxχi +

n∑
i=1

(u2
i )x(qi)δqi

−
n−1∑
i=0

(u2
i )x(qi+1)δqi+1

=
n∑

i=0

(u2
i )xxχi +

n∑
i=1

[
(u2)x

]
qi
δqi
.(2.6)

On every interval (qi, qi+1), since u = ui, u is differentiable and every derivative of u admits a
limit when x tends to qi from one side. It follows that the jump

[
(u2)x

]
qi

is a well-defined quantity
and justifies its use in (2.6). Finally, after differentiating (2.6) once more, we get

(u2)xxx =
n∑

i=0

(u2
i )xxxχi +

n∑
i=1

[
(u2)xx

]
qi
δqi

+
n∑

i=1

[
(u2)x

]
qi
δ′qi
.
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In a similar way we can compute the other terms in (2.2) and we end up with

ut − uxxt +
3
2
(u2)x +

1
2
(u2

x)x −
1
2
(u2)xxx(2.7)

=
n∑

i=0

(
ui,t − ui,xxt +

3
2
(u2

i )x +
1
2
(u2

i,x)x −
1
2
(u2

i )xxx

)
χi

+
n∑

i=1

(
− [uxt]qi

+
1
2

[
u2

x

]
qi
− 1

2
[
(u2)xx

]
qi

)
δqi

+
n∑

i=1

(
− [ut]qi

− 1
2

[
(u2)x

]
qi

)
δ′qi
.

We already noted the equivalence between (2.2) and (2.1) when u is smooth. The same equivalence
obviously holds for ui and, after introducing mi to denote ui − ui,xx, we have

ui,t − ui,xxt +
3
2
(u2

i )x +
1
2
(u2

i,x)x −
1
2
(u2

i )xxx = mi,t + uimi,x + 2miui,x = 0

because, from the definition of ui as a linear combination of e−x and ex, it is clear that mi = 0.
Thus, the first sum on the right-hand side of (2.7) vanishes. The values of the jumps in (2.7) can
be computed from (2.3). We have

(2.8) [ux]qi
= −2pi

and, after some calculation,

(2.9)

[
(u2)xx

]
qi

= 0, [ut]qi
= 2piq̇i, [uxt]qi

= −2ṗi,[
u2

x

]
qi

= [ux]qi
(ux(q+i ) + ux(q−i )) = 4pi

n∑
j=1

pj sgn(qi − qj)e−|qi−qj |,

[
(u2)x

]
qi

= 2u(qi) [ux]qi
= −4pi

n∑
j=1

pje
−|qi−qj |.

Assume that the qi are all distinct. Then (2.2) holds if and only if the coefficients multiplying δqi

and δ′qi
in (2.7) all vanish. Hence, after using (2.9), (2.7) and (2.2), we end up with the system

(2.10)


q̇i =

n∑
j=1

pje
−|qi−qj |,

ṗi =
n∑

j=1

pipj sgn(qi − qj)e−|qi−qj |

with the convention that sgn(x) = 0 if x = 0. We summarize the discussion in the following
lemma.

Lemma 2.2. The function (2.3) is a weak solution of the Camassa–Holm equation if and only if
pi, qi satisfy the system (2.10) of ordinary differential equations.

The system (2.10) is Hamiltonian with Hamiltonian H given by

H =
1
2

n∑
i,j=1

pipje
−|qi−qj |.

It means that (2.10) can be rewritten as

(2.11) q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.
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From (2.3), the momentum is given by

m = 2
n∑

i=1

piδqi .

Hence,

‖u‖2H1(R) = 〈u− uxx, u〉H−1 =
n∑

i=1

2piu(qi) = 2
n∑

i,j=1

pipje
−|qi−qj |,

and the Hamiltonian H and the H1 norm of u satisfy

(2.12) H =
1
2

n∑
i,j=1

pipje
−|qi−qj | =

1
4
‖u‖2H1(R) .

Because of the sign function, the right-hand side in (2.10) is not Lipchitz, and we cannot apply
Picard’s theorem to get existence and uniqueness of solutions of (2.10). However, the Lipschitz
condition would hold if we knew in advance that qi − qj does not change sign. We are going to
prove that the peaks do not cross and that the sign of qi − qj is indeed preserved.

Let us first assume, without loss of generality, that the positions of the peaks at time t = 0,
{qi}n

i=1, are distinct and ordered as follows

(2.13) qi(0) < qj(0) for all i < j.

We consider the system of ordinary differential equations

(2.14)


q̇i =

n∑
j=1

pje
−|qi−qj |,

ṗi =
n∑

j=1

pipj sgn(i− j)e−|qi−qj |.

This system is equivalent to (2.10) as long as the positions of the peaks qi satisfy the ordering
defined in (2.13). In contrast to (2.10), the system (2.14) fulfills the Lipchitz condition of Picard’s
theorem, and therefore there exists a unique maximal solution. If, in addition, the pi are strictly
positive initially then the solution exists for all time.

Lemma 2.3. Let {pi, qi} be the maximal solutions of (2.14). If we have

qi(t) < qj(t) for all i < j,(2.15)

pi(t) > 0 for all i,(2.16)

when t = 0, then {pi(t), qi(t)} are globally defined on [0,∞) and inequalities (2.15) and (2.16)
remain true for all t.

Proof. We call T the maximal time of existence. Let us assume that (2.15) and (2.16) do not hold
for all t ∈ [0, T ). Then, since pi and qi are continuous, there exist t0 in [0, T ) such that (2.15) and
(2.16) hold in [0, t0) and either

qi(t0) = qj(t0) for some i and j with i < j

or
pi(t0) = 0 for some i.

In the first case when qi(t0) = qj(t0) = α, we have that qi and qj are both solutions of the ordinary
differential equation

q̇ =
n∑

k=1

pke
−|q−qk|

with initial condition q(t0) = α. The function q plays the role of the unknown while pk and
qk are given (they are the solutions of (2.14)). By Picard’s theorem, we know that, given some
initial condition, the solution is unique and therefore qi = qj at least in a small interval centered
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around t0. This contradicts the assumption that qi(t) < qj(t) in [0, t0). In the second case when
pi(t0) = 0, the function pi is solution of

ṗ = p
n∑

j=1

pj sgn(i− j)e−|qi−qj |

with initial condition p(t0) = 0. Zero is an obvious solution and since the solution is unique, we
must have pi = 0 on [0, T ). This contradicts our assumption, and hence (2.15) and (2.16) hold for
all time t in [0, T ). We denote by M the sum of all the pi, i.e.,

(2.17) M =
n∑

i=1

pi.

M is preserved by solutions of (2.14). Indeed, we have

(2.18)
dM

dt
=

n∑
i,j=1

pipj sgn(i− j)e−|qi−qj | = 0.

We have proved that the pi are positive for all t in [0, T ). Therefore we have

0 < pi(t) < M,

for all i and all t ∈ [0, T ), which implies the pi are bounded. It follows that ṗi and q̇i in (2.14) are
bounded and the maximum solution is therefore defined for all time, i.e., T = ∞. �

Lemma 2.3 tells us that the ordering of the positions of the peaks is preserved, and in this case,
as we already mentioned, (2.10) and (2.14) are equivalent. Thus we have established the following
result.

Lemma 2.4. If qi < qj for i < j and pi > 0 at t = 0, then the system (2.10) has a unique, globally
defined solution on [0,∞).

Remark 2.5. A similar result is proved by other means in [6].

3. Convergence of multipeakon sequences

Multipeakon solutions can be used to prove the existence of solutions for the Camassa–Holm
equation.

Theorem 3.1. Given u0 in H1(R) such that m0 = u0 − u0,xx is in M+, the space of positive
finite Radon measures, there exists a sequence of multipeakons that converges in L∞loc(R,H1

loc(R))
to the unique solution of the Camassa–Holm equation with initial condition u0.

The proof of Theorem 3.1 is presented at the end of the section. The sequence of multipeakons
mentioned in the theorem is denoted by un(x, t) =

∑n
i=1 p

n
i (t)e−|x−qn

i (t)|. We require that the
initial conditions un

0 (x) = un(x, 0) satisfy the following properties

un
0 → u0 in H1(R),(3.1a)

un
0 is uniformly bounded in L1(R),(3.1b)

pn
i ≥ 0 for all i and n.(3.1c)

In the next proposition we give a constructive proof that such sequences exist. The sequence un
0 is

defined by collocation: It coincides with the given initial function u0 at a given number of points.

Proposition 3.2. Given u0 ∈ H1(R) such that u0 − u0,xx ∈ M+. For each n, let qi,n = i/n.
There exists a unique (pi,n)n2

i=−n2 such that un
0 (x) =

∑n2

i=−n2 pi,ne
−|x−qi,n| coincides with u0 at the

qi,n, that is,

(3.2) un
0 (qi,n) = u0(qi,n)

for all i ∈ {−n2, . . . , n2}. The initial multipeakon sequence un
0 satisfies condition (3.1).
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Proof. In order to simplify the notation, we write u and un instead of u0 and un
0 . First we show

that (3.2) defines a unique pi,n. The equation (3.2) is equivalent to the following system

(3.3) Ap = u

where p and u are vectors of R2n2+1 given by (pi,n)n2

i=−n2 and (u(qi,n))n2

i=−n2 , respectively, and A
equals the matrix

A = (Ai,j)n2

i,j=−n2 , Ai,j = e−|qi,n−qj,n|.

The method is well-posed if A is invertible. In fact, A is symmetric and positive definite. Symmetry
is obvious. To prove the positivity of A, we associate to any vector r in R2n2+1 the function v in
H1(R) given by v(x) =

∑n2

i=−n2 ri,ne
−|x−qi,n|. The H1 norm of v has already been calculated, see

(2.12), and we have

(3.4) rtAr =
1
2
‖v‖2H1(R) ≥ 0.

Hence, A is positive. Let us prove that A is invertible. Assume Ar = 0. From (3.4), we have
v = 0. Thus, since v − vxx = 2

∑n2

i=−n2 ri,nδqi,n
, we have

(3.5) 2
n2∑

i=−n2

ri,nδqi,n = 0.

Since the qi,n are all distinct, it follows that r = 0. Hence, A is invertible, and thus there exists a
unique p solving (3.3) for any given u.

Let us prove (3.1a). Let f and vn denote u− uxx and u− un, respectively. We want to prove
that vn tends to zero in H1(R). Note that vn − vn

xx = f − 2
∑n2

i=−n2 pi,nδqi,n
is a Radon measure

and we have
‖vn‖2H1(R) = 〈vn − vn

xx, v
n〉 = 〈f, vn〉 − 2pi,nv

n(qi,n)

where the bracket 〈µ, g〉 denotes the integration of g with respect to the Radon measure µ. By
assumption (3.2), we have v(qi,n) = 0, and it follows that

(3.6) ‖vn‖2H1(R) = 〈f, vn〉 .

We consider a partition of unity of R that we denote {φi,n}∞i=−∞ and which corresponds to the
decomposition R = ∪∞i=−∞

(
i−1
n , i+1

n

)
. The functions φi,n satisfy 0 ≤ φi,n ≤ 1,

∑∞
i=−∞ φi,n = 1

and suppφi,n ⊂ ( i−1
n , i+1

n ). Then we have

(3.7) 〈f, vn〉 = 〈f, ψnv
n〉+

n2∑
i=−n2

〈f, φiv
n〉

where ψn = 1−
∑n2

i=−n2 φi. We estimate separately the two terms on the right-hand side of (3.7).
Since the support of φi is contained in (qi−1,n, qi+1,n), we have

(3.8) φi(x)vn(x) ≤ sup
x∈(qi−1,n,qi+1,n)

|vn(x)|φi(x).

Since

vn(x) = vn(qi,n) +
∫ x

qi,n

vn
x (t) dt

and vn(qi,n) = 0, we have

sup
x∈(qi−1,n,qi+1,n)

|vn(x)| ≤
∫ qi+1,n

qi−1,n

|vn
x (t)| dt

≤
√

2
n
‖vn‖H1(R) (Cauchy–Schwarz).(3.9)
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The positivity of f directly implies that f is monotone: If u ≤ v, then 〈f, u〉 ≤ 〈f, v〉. Hence, from
(3.8), (3.9) and the monotonicity of f , we get

(3.10)
n2∑

i=−n2

〈f, φiv
n〉 ≤

n2∑
i=−n2

√
2
n
‖vn‖H1(R) 〈f, φi〉 ≤

√
2
n
‖vn‖H1(R) ‖f‖M .

Since H1(R) is continuously embedded in L∞(R), we have, for some constant C independent of
n,

ψn(x)vn(x) ≤ ‖vn‖L∞ ψn(x) ≤ C ‖vn‖H1(R) ψn(x)
and, after using the monotonicity of f ,

(3.11) 〈f, ψnv
n〉 ≤ C ‖vn‖H1(R) 〈f, ψn〉

Gathering (3.6), (3.7), (3.10) and (3.11), we get

‖vn‖2H1(R) ≤
√

2
n
‖vn‖H1(R) ‖f‖M + C ‖vn‖H1(R) 〈f, ψn〉

which, after dividing both terms by ‖vn‖H1(R),

(3.12) ‖vn‖H1(R) ≤
√

2
n
‖f‖M + C 〈f, ψn〉 .

It remains to prove that 〈f, ψn〉 tends to zero. The space of Radon measures and C∗0 , the dual
of C0, where C0 denotes the closure of Cc in L∞(R), are isometrically isomorphic (see, e.g., [11,
Chapter 7]), and we have

‖f‖M = sup
ϕ∈Cc

‖ϕ‖L∞≤1

〈f, ϕ〉 .

Therefore, for all ε > 0, there exists ϕ̃ ∈ Cc with ‖ϕ̃‖L∞ ≤ 1 and such that

‖f‖M ≤ 〈f, ϕ̃〉+ ε.

For n big enough, the supports of ψn and ϕ̃ do not intersect and therefore we have ‖ψn+ϕ̃‖L∞ ≤ 1.
Hence,

〈f, ψn + ϕ̃〉 ≤ ‖f‖M ‖ψn + ϕ̃‖L∞

≤ ‖f‖M
≤ 〈f, ϕ̃〉+ ε

which implies
〈f, ψn〉 ≤ ε,

and this proves that 〈f, ψn〉 → 0. Then, by (3.12), we get that vn tends to zero, and (3.1a) is
proved.

Let us prove (3.1b), namely that pi,n ≥ 0 for all −n2 ≤ i ≤ n2. Let f again denote u − uxx.
By assumption, f is positive. In a first step, we assume that f belongs to C∞(R) ∩ L1(R). We
will remove this smoothness assumption afterwards. A notable property of un is that it is always
bounded by u, i.e.,

(3.13) un(x) ≤ u(x) for all x.

We see this as follows. Let v = u− un. Since we have un − un
xx = 0 everywhere except at the qi,n

and (3.2) holds, v satisfies, for every i ∈ {−n2, . . . , n2 − 1}, the Dirichlet problem

(3.14)
v − vxx = f on (qi,n, qi+1,n),

v(qi,n) = v(qi+1,n) = 0.

The Green’s function G(x, ξ) is defined as the solution of (3.14) with f = δ(x − ξ). We can
compute G (see, for example, [1]), and we get

(3.15) G(x, ξ) =
1

sinh(qi+1,n − qi,n)

{
sinh(x− qi,n) sinh(qi+1,n − ξ) for qi,n ≤ x ≤ ξ,

sinh(ξ − qi,n) sinh(qi+1,n − x) for ξ < x ≤ qi+1,n.
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The general solution of (3.14) is then given by

(3.16) v(x) =
∫ qi+1,n

qi,n

G(x, ξ)f(ξ) dξ.

Since G(x, ξ) is positive, it follows from (3.16) that v ≥ 0 on every interval [qi,n, qi+1,n]. On
the intervals (−∞, q−n2,n] and [qn2,n,∞), v solves a Dirichlet problem similar to (3.14) and the
Green’s functions are obtained from (3.15) by letting q−n2−1,n tend to −∞ and qn2+1,n to +∞,
respectively. The Green’s functions are still positive and that implies, as before, that v ≥ 0 on
(−∞, q−n2,n] ∪ [qn2,n,∞). This concludes the proof of (3.13). From (2.8), we have

pi,n = −1
2

[un
x ]qi,n

= −1
2

lim
h↓0

[
un(qi,n + h)− un(qi,n)

h
− un(qi,n)− un(qi,n − h)

h

]
and, after using (3.13) and (3.2),

pi,n ≥ −1
2

lim
h↓0

[
u(qi,n + h)− u(qi,n)

h
− u(qi,n)− u(qi,n − h)

h

]
≥ −1

2
[ux]qi,n

.

Since f is smooth, u is smooth and therefore [ux]qi,n
= 0. Hence,

(3.17) pi,n ≥ 0.

We want to prove (3.17) without any extra smoothness assumption on f . Let ρ be a positive, C∞

and even function which satisfies
∫∞
−∞ ρ(x) dx = 1. We denote by ρε the mollifier ρε = 1

ερ(x/ε).
Let fε = ρε ∗ f and uε = ρε ∗ u. The mollified function uε tends to u in H1(R) and therefore in
L∞(R). Hence, for all i in {−n2, . . . , n2}, uε(qi,n) tends to u(qi,n) or, using the previous notations,

(3.18) uε → u.

We can construct multipeakons un
ε from the regularized function uε whose coefficients pε,i,n are

determined by

(3.19) Apε = uε, pε = (pε,i,n)n2

i=−n2 .

Since f is positive, fε is positive and, since it also belongs to C∞(R) ∩ L1(R), we have already
established, see (3.17), that pε ≥ 0. Thus, by (3.18),

(3.20) p = Au = lim
ε→0

Auε = lim
ε→0

pε,

implying that p is positive and (3.1b) is proved.
It remains to prove (3.1c), namely that un is bounded in L1(R). The regularized fε of f belongs

to C∞(R)∩L1(R) and is positive. Hence, (3.13) holds when un and u are replaced by un
ε and uε:

(3.21) un
ε ≤ uε.

From (3.20), we have pε → p when ε→ 0. Then by looking at the defintions of un
ε and un it is clear

that un
ε tends to un in L∞(R). We have already seen that uε tends to u in L∞(R). Hence, after

letting ε tend to zero in (3.21), we get that (3.13) holds for all f without any further smoothness
assumption. Morevover, u is positive since the positivity of p implies the positivity of un. From
(3.13), we get

(3.22)
∫ ∞

−∞
un(x) dx ≤

∫ ∞

−∞
u(x) dx.

If u belongs to L1(R), then a bound on ‖un‖L1 follows directly from (3.22). Again, we consider
the regularized fε of f . Since uε satisfies uε − uε,xx = fε, it is known that uε can be expressed as

uε(x) =
∫ ∞

−∞
e−|x−y|fε(y) dy.
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Hence, ∫ ∞

−∞
uε dx =

∫ ∞

−∞

∫ ∞

−∞
e−|x−y|fε(y) dydx

= 2 ‖fε‖L1 (after applying Fubini’s theorem)

= 2 ‖fε‖M .

Since uε is positive and converges to u in L∞(R), by Fatou’s lemma, we get∫ ∞

−∞
u(x) dx ≤ lim inf

∫ ∞

−∞
uε(x) dx

≤ 2 lim inf ‖fε‖M .(3.23)

Let us estimate ‖fε‖M. For any continuous function φ with compact support, we have

(3.24) 〈fε, φ〉 = 〈ρε ∗ f, φ〉 = 〈f, φ ∗ ρε〉 .
Note that the last equality in (3.24) holds because of the parity of ρε (see, e.g., [11, Chapter 9]
for general formulas on convolutions of distributions). Hence,

|〈fε, φ〉| ≤ ‖f‖M ‖φ ∗ ρε‖L∞

≤ ‖f‖M ‖φ‖L∞ ‖ρε‖L1 (Young’s inequality)

and, since ‖ρε‖L1 = 1, it implies
‖fε‖M ≤ ‖f‖M .

Inequality (3.23) now gives ∫ ∞

−∞
u(x) dx ≤ 2 ‖f‖M

which implies that u belongs to L1(R). From (3.22), we get that ‖un‖L1 is bounded. This concludes
the proof of the proposition. �

Remark 3.3. The initial multipeakon sequence un
0 (x) =

∑n2

i=−n2 pi,ne
−|x−qi,n| defined by setting

pi,n =
1
2
〈m0, φi,n〉 for i ∈ {−n2, . . . , n2}

where {φi}∞i=−∞ denotes the partition of unity used in (3.7), also satisfies the condition (3.1). The
proof of that result is much shorter than the proof of Proposition 3.2. However, the method is not
directly applicable numerically (we would have to construct the φi and compute 2n2 +1 integrals),
which makes Proposition 3.2 more interesting.

Remark 3.4. Another natural way to construct a sequence of multipeakons from the set of points
qi,n, is to choose p so that it minimizes ‖u0 − un

0‖H1(R), that is,

(3.25) p = Argmin
pi,n

∥∥∥∥∥∥u0 −
n2∑

i=−n2

pi,ne
−|x−qi,n|

∥∥∥∥∥∥
H1(R)

.

It turns out that the sequence that this minimization method produces and the one of Proposition
3.2 are the same. One can prove this as follows. We have

‖u0 − un
0‖

2
H1(R) = ‖u0‖2H1(R) − 2 〈un

0 , u0〉H1 + ‖un
0‖

2
H1(R)

= ‖u0‖2H1(R) − 2
〈
un

0 − un
0,xx, u0

〉
M + 2ptAp

and, since

〈
un

0 − un
0,xx, u0

〉
M =

〈
n2∑

i=−n2

2pi,nδqi,n , u0

〉
= 2

n2∑
i=−n2

pi,nu0(qi,n) = 2ptu,

we get

(3.26) ‖u0 − un
0‖

2
H1(R) = ‖u0‖2H1(R) − 4ptu+ 2ptAp.
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By differentiating (3.26) with respect to p, we can easily check that the minimizer p of (3.26)
satisfies (3.3). In addition, since A is positive definite, p is the unique strict minimizer of (3.26).

The estimates contained in the following lemma will be needed to derive the existence of a
converging subsequence.

Lemma 3.5. Let un(x, t) be a sequence of multipeakons with initial data satisfying (3.1). The
following properties hold:
(i) un is uniformly bounded in H1(R),
(ii) un

x is uniformly bounded in L∞(R),
(iii) un

x has a uniformly bounded total variation,
(iv) un

t is uniformly bounded in L2(R).

Proof. From Lemma 2.4 we know, using assumption (3.1c), that the system (2.10) has a unique
global solution, and hence we have a globally defined sequence of multipeakons denoted un(x, t).
In order to simplify the notation, we drop the superscript n on pn

i and qn
i and write

un =
n∑

i=1

pie
−|x−qi|.

Property (i) is obvious because of (3.1a) and the fact that the H1 norm is automatically preserved
due to the Hamiltonian structure of (2.10). We have

un
x(t, x) =

n∑
i=1

−pi(t) sgn(x− qi(t))e−|x−qi(t)| a.e.

Hence,

|un
x(x, t)| ≤

n∑
i=1

pi(t)e−|x−qi(t)| (pi ≥ 0)

≤ ‖un‖L∞

≤ C ‖un‖H1(R) (H1(R) is continuously embedded in L∞(R))

and (ii) follows from (i). The total variation of un
x equals ‖un

xx‖M (see, e.g., [10, Chapter 6]). We
have

(3.27) ‖un
xx‖M ≤ ‖un‖M + ‖un − un

xx‖M .

Since un ∈ L1(R), we have ‖un‖M = ‖un‖L1 and

(3.28) ‖un‖L1 =
n∑

i=1

pi(t)
∫ ∞

−∞
e−|x−qi(t)| dx = 2

n∑
i=1

pi(t) = 2
n∑

i=1

pi(0) = ‖un
0‖L1

because
∑n

i=1 pi(t) is a constant of motion (see (2.17) and (2.18)). Since the pi are positive, the
fact that mn = un − un

xx =
∑n

i=1 2piδqi and (3.28) imply that

(3.29) ‖un − un
xx‖M = 2

n∑
i=1

pi = ‖un
0‖L1 .

Hence, from (3.27),
‖un

xx‖M ≤ 2 ‖un
0‖L1

and (iii) follows from (3.1b) .
The derivative un

t is given by

un
t =

n∑
i=1

(
ṗie

−|x−qi| + piq̇i sgn(x− qi)e−|x−qi|
)
,

or, after using (2.10),

un
t =

n∑
i,j=1

pipje
−|x−qi|e−|qi−qj | (sgn(qi − qj) + sgn(x− qi)) .
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Hence, since the pi are all positive,

‖un
t ‖L2 ≤ 2

n∑
i,j=1

pipje
−|qi−qj |

∥∥∥e−|x−qi|
∥∥∥

L2

≤ 2
n∑

i,j=1

pipje
−|qi−qj |

≤ ‖un‖2H1(R)

and assertion (iv) follows from (i). �

To prove the existence of a converging subsequence of un in C([0, T ],H1
loc(R)) we recall the

following compactness theorem adapted from Simon [18, Corollary 4].

Theorem 3.6 (Simon). Let X,B, Y be three continuously embedded Banach spaces

X ⊂ B ⊂ Y

with the first inclusion, X ⊂ B, compact. We consider a set F of continuous functions mapping
[0, T ] into X. If F is bounded in L∞([0, T ], X) and ∂F

∂t =
{

∂f
∂t | f ∈ F

}
is bounded in Lr([0, T ], Y )

where r > 1, then F is relatively compact in C([0, T ], B).

Proof of Theorem 3.1. Given initial data u0 ∈ H1(R) with u0 − u0,xx ∈ M+ we know from
Proposition 3.2 that there exists a sequence un

0 satisfying condition (3.1). Furthermore, by using
Lemma 2.4, we infer that there exists a sequence of multipeakons un(x, t) such that un|t=0 = un

0 .
The sequence then possesses the properties stated in Lemma 3.5.

To apply Theorem 3.6, we have to determine the Banach spaces with the required properties.
Let K be a compact subset of R. We define X = X(K) as the set of functions of H1(K) which
have derivatives of bounded variation, that is,

X(K) =
{
v ∈ H1(K) | vx ∈ BV (K)

}
endowed with the norm

‖v‖X(K) = ‖v‖H1(K) + ‖vx‖BV (K) = ‖v‖H1(K) + ‖vx‖L∞(K) + TVK(vx).

It follows that X(K) is a Banach space. Let us prove that the injection X(K) ⊂ H1(K) is
compact. We consider a sequence vn which is bounded in X(K). By the Rellich–Kondrachov
theorem, since ‖vn‖H1(K) is bounded, there exists a subsequence (that we still denote vn) which
converges to some v in L2(R). Since TVK(vn,x) is bounded, Helly’s theorem allow us to extract
another subsequence such that

(3.30) vn,x → w a.e. in K

for some w ∈ L∞(K). We have ‖vn,x‖L∞(K) bounded. From (3.30) we get, by Lebesgue’s dom-
inated convergence theorem, that vn,x → w in L2(K). Using the distributional definition of a
derivative, it is not hard to check that w must coincide with vx. Therefore vn converges to v in
H1(K) and X(K) is compactly embedded in H1(K).

The estimates we have derived previously imply that un and un
t are uniformly bounded in

L∞([0, T ], X(K)) and L∞([0, T ], L2(K)), respectively. Since X(K) ⊂ H1(K) ⊂ L2(K) with
the first inclusion compact, Simon’s theorem gives us the existence of a subsequence of un that
converges to some u ∈ H1(K) in C([0, T ],H1(K)). We consider a sequence of compact sets
Km such that R = ∪m∈NKm and a sequence of time Tm such that limm→∞ Tm = ∞. By a
diagonal argument, we can find a subsequence (that we still denote un) that converges to some
u ∈ C([0, Tm],H1(Km)) in L∞([0, Tm],H1(Km)) for all m. Therefore u belongs to C(R,H1

loc(R))
and un converges to u in L∞loc(R,H1

loc(R)).
It remains to prove that u is solution of the Camassa–Holm equation. This simply comes from

the fact that the un are all weak solutions of (2.2), and since they converge to u in L∞loc(R,H1
loc(R)),

u is a weak solution of (2.2). The solutions of the Camassa–Holm equation for the class of initial
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data we are considering in the theorem are unique, see [8]. It implies that not only a subsequence,
but the whole sequence of multipeakons converges to the solution. �

4. numerical results

Multipeakons can be used in a numerical scheme to solve the Camassa–Holm equation with
initial data satisfying u0 − u0,xx ∈ M+. The scheme consists of solving the system of ordinary
differential equations (2.10) where the initial conditions are computed as in Proposition 3.2.

In the numerical experiments that follow, we solve (2.10) by using the explicit Runge–Kutta
solver ode45 for ordinary differential equation from Matlab. In the case where u0 is sufficiently
smooth, an initial multipeakon sequence can be obtained without having to solve (3.2). This is
the aim of the following proposition.

Proposition 4.1. Let u0 be such that u0−u0,xx is a positive function in H1(R)∩L1(R). We set

(4.1)
qi,n =

i

n
,

pi,n =
1
2n

[u0 − u0,xx](qi,n) =
1
2n
m0(qi,n).

Then the sequence un
0 =

∑n2

i=−n2 pi,ne
−|x−qi,n| of multipeakons satisfies the conditions given in

(3.1).

Proof. Condition (3.1c) follows directly from the definition of pi,n and the positivite of m0. Let
us prove (3.1a), i.e., that un

0 → u0 in H1(R). It is enough to show that mn
0 tends to m0 in H−1

because the mapping v 7→ v− vxx is an homeomorphism from H1 to H−1 (see [2, chapter 8]). For
any function φ in H1(R), we have to prove that

〈mn
0 , φ〉 =

n2∑
i=−n2

2pi,nφ(qi,n) =
1
n

n2∑
i=−n2

m0(qi,n)φ(qi,n)

converges to

〈m0, φ〉 =
∫

R
m0(x)φ(x) dx.

If φ is continuous with compact support, the above convergence simply follows from the fact that for
continuous functions, the Riemann sums converge to the integral. To prove that 〈mn

0 , φ〉 → 〈m0, φ〉
for any φ ∈ H1(R), it is then enough to show that ‖mn

0‖H−1 is uniformly bounded. In fact, mn
0 is

uniformly bounded in M and

(4.2) ‖mn
0‖M =

1
n

n2∑
i=−n2

m0(qi,n) → ‖m0‖L1 .

Let us prove (4.2). We have∫
R
m0(x) dx =

∫ −n

−∞
m0(x) dx+

∫ n+ 1
n

−n

m0(x) dx+
∫ ∞

n+ 1
n

m0(x) dx.

The first and the last integral tend to zero because m0 belongs to L1(R). Then we have∣∣∣∣∣∣
∫ n+ 1

n

−n

m0(x) dx−
1
n

n2∑
i=−n2

m0(qi,n)

∣∣∣∣∣∣ ≤
n2∑

i=−n2

∫ qi+1,n

qi,n

|m0(x)−m0(qi,n)| dx

≤
n2∑

i=−n2

∫ qi+1,n

qi,n

∫ x

qi,n

|m′
0(ξ)| dξdx.
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We change the order of integration, introduce χi,n to denote the characteristic function of the
interval (qi,n, qi+1,n), and get∣∣∣∣∣∣

∫ n+ 1
n

−n

m0(x) dx−
1
n

n2∑
i=−n2

m0(qi,n)

∣∣∣∣∣∣ ≤
n2∑

i=−n2

∫ qi+1,n

qi,n

∫ qi+1,n

ξ

|m′
0(ξ)| dxdξ

=
∫ ∞

−∞
|m′

0(ξ)|
n2∑

i=−n2

χi,n(ξ)(qi+1,n − ξ) dξ

≤ ‖m′
0‖L2

[ ∫ ∞

−∞

( n2∑
i=−n2

χi,n(ξ)(qi+1,n − ξ)
)2

dξ
]1/2

≤ ‖m0‖H1(R)

[ ∫ ∞

−∞

n2∑
i=−n2

χi,n(ξ)(qi+1,n − ξ)2 dξ
]1/2

≤ ‖m0‖H1(R)

[ n2∑
i=−n2

∫ qi+1,n

qi,n

(qi+1,n − ξ)2 dξ
]1/2

≤ ‖m0‖H1(R)

[ n2∑
i=−n2

1
3n3

]1/2

≤ 1√
n
‖m0‖H1(R)

which tends to zero. This concludes the proof of (3.1a) and condition (3.1b) follows from (4.2)
since we have, see (3.29),

‖un
0‖L1 = 2

n∑
i=1

pi = ‖mn
0‖M .

�

We tested our algorithm with smooth traveling waves. Smooth traveling waves are solutions of
the form

u(x, t) = f(x− ct)

where f is solution of the second-order ordinary differential equation

(4.3) fxx = f − α

(f − c)2
.

In order to give rise to a smooth traveling wave, the constants c and α cannot be chosen arbitrarily,
see [15]. Here we consider periodic smooth traveling waves. The approach, based on functions in
H1(R), which was developed in the previous sections, can be adapted to handle solutions with
periodic boundary conditions. We then have to consider periodic multipeakons which are solutions
of the form

(4.4) u(x, t) =
n∑

i=1

pi(t)G(x, qi(t))

where G is given by

G(x, y) =
cosh(d(x, y)− a

2 )
sinh a

2

.

In the expression above, a is the period and d(x, y) = min (|x− y| , a− |x− y|) is the distance in
the interval [0, a], identifying the end points 0 and a of the interval. The function G(x, y) can be
interpreted as the periodized version of e−|x−y| as we have G(x, y) =

∑∞
k=−∞ e−|x−y+ka|. The
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coefficients pi and qi satisfy equation (2.11) when H is replaced by the Hamiltonian

Hper =
1
2

n∑
i,j=1

pipjG(qi, qj).

For periodic functions, we have Hper = 4 ‖u‖H1((0,a)) for u given by (4.4). It is not hard to prove
that, with the necessary amendments, Theorem 3.1 and Proposition 3.2 hold also for periodic
functions in H1([0, a]).

A high precision solution of equation (4.3) is used as a reference solution for the smooth traveling
wave. We take α = c = 3. With initial condition f(0) = 1, fx(0) = 0, it gives rise to a smooth
traveling wave of period a ≈ 6.4723. In our multipeakon scheme, we approximate initial data by
using (4.1) because the initial data is smooth. In Figure 1, we show the result of such approximation
in the case of 10 multipeakons.

Figure 1. Approximation of a smooth traveling wave (dashed curve) by (4.4)
with n = 10. On the left, the coefficients pi are computed by using the method of
Proposition 4.1 designed for smooth functions. On the right, they are computed
by using the collocation method of Proposition 3.2.

Number of peakons 5 10 20 40

‖u− uexact‖H1(R) at t = 0 1.48 0.76 0.38 0.20

Ratio 1.95 2 1.9

‖u− uexact‖H1(R) at t = 2 1.31 0.68 0.34 0.17

Ratio 1.93 2 2
Table 1. Convergence rate in the case of a smooth traveling wave.

In Table 1 we give the error in the H1 norm between the computed and the exact solutions at
time t = 0 and t = 2 (at t = 2, the wave has approximately traveled over a distance equal to one
period). We can see that the computed solution converges to the exact solution at a linear rate. It
is to be noted that the error does not grow in time and is apparently only due to the error which
is made in approximating the initial data.

Our next example deals with a initial data function u0 which has discontinuous derivative. We
take

u0(x) =
10

(3 + |x|)2
.

The function u0 satisfies u0 − u0,xx ≥ 0 and it is plotted in Figure 2. In our multipeakon scheme,
we use Proposition 3.2 to set the initial sequence of multipeakons.
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Figure 2. Solution with initial data u0(x) = 10(3 + |x|)−2 at t = 0, 5, 10, 15, 20
(from the bottom to the top).

In Figure 2 the solution is computed with very high resolution (n = 1000 peakons spread over
the interval [−30, 30]) and in Table 4, the error is evaluated by taking this numerical solution as
an approximation of the exact solution (except a time t = 0 where we can use u0).

Number of peakons 61 127 251 501 1001

‖u− uexact‖H1(R) at t = 0 0.27 0.14 0.079 0.053 0.045

Ratio – 1.93 1.77 1.49 1.18

‖u− uexact‖H1(R) at t = 10 0.58 0.18 0.074 0.028 –

Ratio – 3.22 2.43 1.95 –

Table 2. Convergence rate for an initial data given by u0(x) = 10(3 + |x|)−2.

The convergence rate at time t = 0 is not linear, as in the previous case. This is due to the fact
that we only took peakons on the interval [−30, 30]. We have considered the error in H1([−30, 30]),
and in that case the convergence is linear. As in the case of smooth traveling waves, the error
does not grow in time showing the robustness of the algorithm.
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