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Bone is a unique organ composed of mineralized hard tissue, unlike any other 
body part. The unique manner in which bone can constantly undergo self-re-
modeling has created interesting clinical approaches to the healing of damaged 
bone. Healing of large bone defects is achieved using implant materials that 
gradually integrate with the body after healing is completed. Such strategies re-
quire a multidisciplinary approach by material scientists, biological scientists, 
and clinicians. Development of materials for bone healing and exploration of the 
interactions thereof with the body are active research areas. In this review, we 
explore ongoing developments in the creation of materials for regenerating hard 
tissues.
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INTRODUCTION

Repair of bone defects using implanted material com-
menced millennia ago; ancient Peruvian and Egyptian 
societies used implants to heal bone defects [1-4]. The 
modern era of bone substitutes commenced with the 
attempt of the Dutch surgeon Job van Meekeren to 
repair a soldier’s broken skull using a skull fragment 
from a dog [5]. Fred Albee first described autologous 
bone grafting, using part of the tibia to achieve spinal 
fusion. The Swedish surgeon Levander showed that 
osteoinduction could be used to induce regeneration of 
hard tissue [6]. Urist [7] first reported, in 1965, that bone 
morphogenetic proteins (BMPs) exhibited osteoin-
ductive potential. Hard tissue repair, and regeneration 
science and technology, have advanced rapidly in the 
modern era. An in-depth understanding of the under-
lying principles has been attained, new methods and 
materials developed, and a multidisciplinary approach 

used to achieve successful hard tissue regeneration. 
Many scaffold systems have been proposed for bone 
tissue engineering. Innovation have been made in all 
of scaffold design, material selection, incorporation 
of drugs and growth factors, mechanical stability, and 
bone regeneration efficiency. However, autografts are 
still considered to be the best bone graft option for 
hard tissue repair; synthetic bone graft substitutes do 
not exhibit equivalent osteogenic or osteoinductive 
performance. However, autografting does not meet the 
overall medical demand for orthopedic implants. Har-
vesting of adequate quantities of bone is difficult and 
postoperative complications occur at harvest sites. Al-
lografts and xenografts are both good alternatives, but 
are associated with risks of disease transmission and 
immunorejection. Thus, synthetic bone graft substi-
tutes are the logical option when it is sought to meet the 
rapidly increasing demand for orthopedic implants, 
even though synthetic bone substitutes have some in-
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herent limitations in terms of strength, osteoconduc-
tion, osteoinduction, osseointegration, and biodegra-
dation. Current studies on bone substitutes are focused 
on improving various features of scaffolds; and include 
the development of new biomaterials, modification of 
mechanical and structural-morphological features, 
enhancement of biocompatibility by chemically mod-
ifying the surfaces of materials, improvement of oste-
oinductive capabilities and the ability to incorporate 
growth factors, and loading of stem cells onto scaffolds 
to induce self-initiated tissue regeneration. These re-
markable advances have helped reduce the gap between 
autografts and synthetic bone graft substitutes.

Key issues in successful implantation are the initial 
and long-term immune reactions of the body to the im-
plant. The immune system recognizes the implant, and 
may reject it, initiating many physiological responses 
involving immune cells. Thus, the chemical nature 
of the implant material is key to its biocompatibility. 
Consequently, cell-material interactions within the 
defect zone determine the overall success of healing. 
Hard tissue repair also requires high-level mechanical 
stability; this is not the case for other injured tissue. 
Load-bearing capacity and structural rigidity is afford-
ed by the skeletal system, and repaired hard tissue is 
directly subjected to or is expected to tolerate signif-
icant mechanical loading, which limits the choice of 
bone substitute materials. Thus, only a few materials 
are presently considered useful. Hard tissue is com-
posed of carbonated hydroxyapatite (HAp) crystals and 
collagen (the principal building blocks) with cellular 
and systemic components. Thus, calcium phosphate 
ceramics and collagen are natural choices of bone 
substitutes. Positive cell-material interactions are also 
observed with several other inorganic materials like 
bioglasses, phosphates of magnesium; sulfate, carbon-
ate, and silicate of calcium. Some very inert inorganic 
materials, including alumina, zirconia, titanium alloy, 
and cobalt-chromium alloy, find specific hard tissue 
applications, but these materials are nonresorbable 
and osseointegration is absent at the bone-implant in-
terface. Synthetic biodegradable polymers, including 
polylactic-co-glycolic acid (PLGA), polycaprolactone 
(PCL), and polyethylene glycol (PEG), interact positively 
with cells, and are used as substitute bone scaffolds [8,9]. 
These materials are degradable in the physiological 

environment and the degradation products have no 
harmful effects. Moreover, degradation rate, hydro-
philicity, and mechanical strength can be controlled by 
manipulating the chemical composition. Many natural 
biopolymers are also available, and are very suitable 
bone substitutes in terms of cell-material interactions. 
Chitosan, alginate, cellulose, gelatin, collagen, keratin, 
and hyaluronic acid are inherently recognizable by cells 
and exhibit favorable cell-material interactions. These 
are large polymers of very high molecular weight. Bio-
degradation of such molecules is very rapid, and the 
degradation products may stimulate the physiological 
mechanisms of healing. Bone substitute materials are 
currently selected based on an ability to impart addi-
tional biocompatibility to a structurally stable scaffold 
[10,11].

Healing of bone defects in adults closely resembles 
bone formation during organogenesis. Most fractures 
heal by indirect or secondary fracture healing, via for-
mation of an intermediate callus [12]. An inflammatory 
response occurs soon after a fracture of bone, or surgi-
cal intervention, and extravascular blood cells form a 
blood clot. After this initial immune reaction, collagen 
f ibers and mineralized osteoids combine to form a 
soft callus around the injury site. This soft (or fracture) 
callus ossifies to form a disorganized structure termed 
woven bone. During a later phase of bone formation, 
this woven bone is replaced gradually with highly 
organized lamellar bone, which begins to form soon 
after the collagen matrix of either tissue becomes 
mineralized. Osteoblastic cells penetrate the mineral-
ized matrix and angiogenesis begins with creation of 
microvessels. Osteoblasts deposit new lamellar bone 
on the surface of the mineralized matrix. Eventually, 
all woven bone and the fracture callus are replaced by 
lamellar or trabecular bone. This remodeling process 
transforms trabecular bone into natural compact bone 
Said so, the whole process should occur inside a bone 
substitute scaffold without jeopardizing the series of 
events and occasionally complementing the process by 
its morphological and chemical attributes.

Bone substitute scaffolds must meet stringent re-
quirements; they must be nontoxic, mechanically 
sound, have a three-dimensional (3D) porous structure, 
exhibit optimum biodegradation, allow new bone for-
mation at an acceptable rate, be economical to make, 
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and allow easy fabrication into the final preforms [13-15]. 
Scaffold architecture is critical to optimize the micro-
environment for the synthesis of new tissue, and to al-
low flow or diffusion of nutrients between cells and the 
surrounding environment. Scaffold properties depend 
primarily on the biomaterial used and the fabrication 
process. Several ceramic and glass materials have su-
perior biocompatibility but poor mechanical strength 
and stability, rendering them unsuitable as porous 
scaffolds for bone tissue regeneration. Apart from their 
lower intrinsic strength, processing defects (such as 
irregularly shaped pores), surface defects, and residual 
stress, all lower the mechanical strength of the scaffold 
systems made of these materials. Thus significant re-
search is devoted to come up with stronger and more 
biocompatible systems.

Recent advances in bone substitutes have made 
signif icant progress regarding these challenges. 
Advances in materials design; chemical modification; 
fabrication techniques creating stronger, more porous, 
and more biocompatible scaffolds; combinations of 
various strategies to enhance cell-material interactions; 
and stimulation of cells to ensure rapid but controlled 
bone regeneration, are continuously reported. Tissue 
engineering has opened a new dimension in bone 
substitute technology.

The aim of this review is to explore modern frontiers 
of bone substitute technologies. We will explore 
how the technology is shaping its current form. Our 
discussion broadly covers innovations in materials 
development and fine-tuning, together with structural 
and functional improvisations. 

INNOVATIONS IN MATERIALS 

As discussed earlier, the chemical nature of the scaffold 
material is fundamental for successful implantation. 
Cell-material interactions govern the adaptation 
and systemic integration of the foreign body into the 
physiological environment. Many choices of material 
are available; each has advantages and disadvantages. 
Thus, ever-higher performance bone substitute 
systems (in terms of both mechanical and biological 
properties) are under continuous development. Some 
innovations are discussed below under different 

categories of material.

Bioceramics
Bioceramics are the best-studied bone substitute 
materials because they are chemically similar to bone. 
Fabrication of bioceramic porous scaffolds is achieved 
using various techniques to create pores, including salt 
leaching [16], sponge replica and gas foaming [17-20],  
porogen-based method [21], 3D printing [22], etc. Fig. 1 
shows a scaffold fabricated by sponge replica method.

Both the microstructure and pore size and porosity 
significantly influence the mechanical properties and 
osseointegration of a scaffold [23]. Newer fabrication 
techniques have been proposed which allow great-
er control of pore size, porosity, scaffold shape, ease 
of fabrication, and reliability of physicomechanical 
properties. Recent fabrication techniques include 3D 
printing [24], stereolithography [25], in situ synthesis 
using a reactive phase [26], and laser cladding [27]. 
These methods are particularly useful for creating 
customized scaffolds with predictable mechanical 
performance. Moreover, these methods afford new 
opportunities for development and customization of 
scaffolds, allowing achieve greater control over cell-
material interactions in the biological environment.

The bioactive concept seeks to balance mechanical 
strength and bioresorbability using biphasic calcium 
phosphate (combination of hydroxyapatite and 
tricalcium phosphate). This material is under intense 
study in terms of chemical modifications, for use as 
a base material allowing further functionalization 
via surface treatment, as a component of hybrids, and 
in terms of loading of bioactive secondary phases. 
Calcium phosphates have been chemically modified 

Figure 1. Scanning electron micrographs of biphasic calci
um phosphate scaffolds fabricated using the sponge replica 
method. Low magnification image (A) and high magnifica-
tion image of the scaffold strut (B).

A B
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by incorporating Si, Sr, and Zn [28-35]. These chemical 
modifications enhanced osteoblastic proliferation and 
material performance; dissolution rate, densification 
behavior, mechanical strength, and biocompatibility. 
The ions promote bone formation whern the ions are 
present in dissolution products adjacent to the cell-
material interface.

Nanophase bioceramics have unique advantages; 
size effects and nanoscale surface phenomena are in 
play. These materials may be used as fillers in poly-
meric scaffold systems, to improving both mechanical 
and biological properties, and to coat on metallic 
implants [36]. Various synthetic processes are used to 
prepare nanophase calcium phosphate, modify process 
chemistry and powder characteristics (in terms of 
morphology and biocompatibility). Hydrothermal, sol-
gel, wet chemical, and biomimetic deposition methods 
have been investigated [37].

A key issue with bioceramic bone substitutes is 
the fact that load-bearing is limited during heal-
ing. However, ceramics are historically regarded as 
nonload-bearing materials. Bioceramics, such as 
HAp, tricalcium phosphate (TCP), and other calcium 
phosphate materials, including calcium sulfate, are 
brittle. Introduction of pores significantly decreases 
bulk strength. However, high-level porosity is 
indispensable for sound osteointegration, and ef-
forts are being made to modify the microstructures 
and structural features of porous bioceramics, to 
achieve higher strength. Processing conditions and 
methods drastically affect the surface characteristics 
of fabricated bioceramics scaffolds; paving the way for 
construction of high-strength scaffolds. Bone sub-
stitutes of block, cylindrical granule, and spherical 
granule types have been developed using sponge 
replica, fibrous monolithic, and slurry drip process-
es [38-41] Fig. 2 shows a multichannel granular bone 
substitute and its internal microstructure. Bone 
formation with angeogenesis using this type bone 
substitutes are described in the schematic model.

The use of ceramic-polymer hybrid systems to fabri-
cate scaffolds has attracted much attention. However, 
the choice of polymeric materials is increasing only 
gradually. The use of polymers alone may not be op-
timal when it is sought to create biocompatible bone 
substitutes with adequate mechanical strength. 

Calcium phosphates, and (in some cases) bioglass and 
glass ceramics, combined with polymers, afford good 
mechanical properties and high-level biocompatibility. 
Bioceramics may be added to reinforce the matrix, 
improve both mechanical characteristics and biocom-
patibility of synthetic biopolymers that do not exhibit 
adequate levels of cell- material interaction [42-44].

Ceramic-polymer hybrid composite systems en-
hance the morphological and functional properties of 
scaffolds. Usually, ceramic-only scaffolds are prepared 
via high temperature sintering to ensure strength 
and stability. This prohibits in situ functionalization 
by biochemical agents, such as drugs and/or growth 
factors, and hampers replication of any biomimetic 
process, such as co-deposition and co-precipitation, 
that occurs in the physiological environment during 
natural bone regeneration. HAp nanocrystals serve 
as the chief building blocks of natural bone. Thus, 
thermally prepared ceramic scaffolds are entirely 
different from those prepared in a low-temperature 
environment. Biomimetic scaffold fabrication has been 
investigated in the context of ceramic-polymer hybrid 
systems [45,46]. Incorporation of active biomolecules, 
including growth factors, drugs, and even genes, is of 
great interest (please see below).

Glass and glass ceramics
Bioactive glass and glass-ceramics exhibit superb bio-
compatibility and can directly bond to living tissue 
[47,48]. Bioactive glass is amorphous, whereas glass-ce-

Figure 2. Optical microscopic (A) and SEM images (B) of 
granular bone substitutes.  Frame (C) and pore (D) surface 
of the granular bone substitute. Adapted from Byun et al., 
with permisson from Springer [39].
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ramic is a crystallized glass (the crystalline phase is 
created during thermal treatment) with a residual 
glass phase. Both materials trigger specific biological 
responses that enhance cell-material interactions. The 
products of rapidly degrading bioglass materials up-
regulate gene expression to directly promote cellular 
activity, accelerating bone regeneration and formation 
of natural bonds with existing bone. The bioactive and 
bone-bonding mechanisms of 45S5 glass (developed 
by Professor Hench) have been widely studied and are 
described in detail elsewhere [49,50]. The best bioglass 
occupies a narrow range in the ternary phase diagram 
of Na2O-CaO-SiO2, with a constant P2O5 level. Several 
modifications (via addition of B2O3, TiO2, Li2O, FeO, 
and/or SrO) have been proposed [51-57]. All materials 
are prepared by melt quenching; the molten phase is 
quenched to stabilize the glass structure at room tem-
perature. Fabrication of a bioglass scaffold bone substi-
tute requires thermal reprocessing, triggering crystal-
linity and disruption of the glass structure. The glass 
phase is the key to biocompatibility; disrupting the 
phase has adverse effects. Thus bioglass scaffolds made 
via thermal reprocessing exhibit decreased biocom-
patible. Either a glassy or crystalline phase may form, 
depending on the nature of Si-O bonding in the glass 
structure. Nonbridging Si-O (compared to the bridg-
ing Si-O bond of SiO2) allows bioglass to dissolve in 
aqueous environments; bioactivity follows. Sintering of 
bioglass changes nonbridging Si-O bonds to bridging 
Si-O bonds. Addition of K2O, MgO, B2O3, and/or Al2O3 
allows bridging Si-O bonds to be retained at higher 
sintering temperatures [58]. Several modified systems 
are already available, including 13-93, ICIE16, and BioK 
[59-61]. In a recent attempt bioactive glass system has 
been synthesized using conventional SiO2-CaO-Na2O-
P2O5 composition, employing an ultrasound-assisted 
hydrothermal method [62].

Bioglass systems were prepared by sol-gel processing 
to avoid thermal treatment. This process allows cre-
ation of nanophase and nanoporous systems. This 
system invites entirely new applications in drug 
and growth factor delivery; the scaffolds are rapid-
ly biodegraded, and thus offer enhanced biological 
responses [63]. Compositional variation has been 
reported during sol-gel processing [64-67]. Sol-gel bio-
glass of high silica content can be prepared in the ab-

sence of network modifier cations. Bioglass of similar 
composition to the melt-derived counterpart is also 
available. As stabilization of glass via conventional heat 
treatment alters glass properties, including particle 
size and density, stabilization of sol-gel-derived glass 
at room temperature would aid in biocompatibility. 
Such properties are also signif icant in the f ield of 
composites; bioactive glass powder is used to reinforce 
polymeric matrices of a low elastic modulus [68,69]. 
Textural features, including particle size distribution, 
specific surface area, and porosity, strongly influence 
bioactivity. Thus, the rate of formation of the interfacial 
hydroxyl carbonate apatite layer, which is structural-
ly and chemically equivalent to the mineral phase of 
bone, is influenced by particle size range and the pow-
der volume fraction during bone-bonding.

Bioglass of excellent bioactivity has been used to coat 
the surfaces of less biocompatible or bioinert materials, 
such as titanium or steel. Metallic materials are the 
first choice when mechanical stability is desired. How-
ever, the inherent lack of any direct bond with natural 
bone poses a significant postoperative risk of implant 
loosening and friction damage to surrounding tissue. 
Various methods have been used to modify metallic 
implant surfaces via coating with bioglass. Surface 
modif ication can also be achieved using calcium 
phosphate materials. Plasma spraying, electrophoretic 
deposition, and dip coating methods have been used to 
coat metallic scaffolds [70,71].

Biopolymers and hydrogels
The most diverse range of materials for hard tissue 
regeneration are biopolymers. Many such polymers 
are naturally derived and thus, are inherently safe. 
Many natural polymers have been used for bone tissue 
engineering; these include chitosan, hyaluronic acid, 
alginate, oxidized alginate, gelatin, pectin, starch; and 
proteins including soy, collagen, fibrin gels, and silk 
[72]. Synthetic polymers, including polyglycolic acid, 
polylactic acid, their copolymer PLGA, polyanhydrides, 
polycarbonates, polyphosphazenes, polyfumarates, and 
poly(butylene terephthalate)/poly(ethylene oxide), have 
also been used extensively among others [73-75].

Biopolymers are degradable under physiological 
conditions and the degradation products are metabolically 
discarded. Natural biopolymers have been used to 
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manufacture porous scaffolds. All natural polymer 
systems exhibit poor mechanical stability; and 
must thus be coupled with natural polymers and/
orsynthetic biodegradable polymers to create stable 
systems. Composites have been used to physically 
or chemically crosslink and stabilize scaffolds. New 
fabrication techniques, (particularly those applica-
ble at room temperature) including electrospinning 
and 3D printing, have rendered such approaches fea-
sible. Various polymer scaffolds have been created 
via electrospinning of collagen, gelatin, PLGA, PEG, 
and PCL. The inherent nanoporous structure of an 
electrospun mat enables easy diffusion of nutrients 
through the scaffold. The high surface area of the 
mat improves tissue-material interactions. These 
features have been exploited to deliver growth factors 
and drugs enhancing bone tissue regeneration [76,77]. 
Modif ications of basic electrospinning technology 
have allowed the creation of patterned mats, composite 
scaf folds, and complex interlayers in artif icial 
biomimetic scaffolds [78-80]. Fig. 3 depicts a hybrid 
ceramic-polymer scaffold for artif icial small bone 
with electrospun mat forming a bone conducive porous 

scaffold assembled around a porous zirconia core. 
Electrospun mats have been used to deliver drugs; 
the stability and biocompatibility of such mats are 
enhanced by the use of both synthetic and natural 
polymers, and HAp nanoparticles [81]. Fig. 4 showed 
polymer-ceramic hybrid electrospun scaffold as a ca-
reer for bone morphogenetic growth factor and depict-
ed the enhanced bone regeneration ability of the drug 
loaded scaffold using a rat calvarial defect model.

Natural polymers, including hyaluronic acid, collagen, 
gelatin, alginate, and chitosan, are obtained from animal 
and plants wherein they play physiologically import-
ant roles. Thus, these biopolymers are inherently 
favor cell-material interactions and have been widely 
used in bone tissue engineering [82]. These polymers 
undergo extensive hydration to form hydrogels under 
physiological conditions. Hydrogels serve as matrices 

Figure 3 . Scanning electron microscopic images of a 
ZrO2/biphasic calcium phosphate scaffold wrapped with 
poly(methylmethacrylate)-poly-ε-caprolactone-hydroxyape-
tite (PMMA-PCL-Hap) fibers (A), and the fibers themselves 
(B). (C) Bundles surrounded by PMMA/PCL/Hap; (D) the 
bundles after removal of the steel wires. Adapted from Kim 
et al. [80].
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D Figure 4. Scanning electron micrographs of polycapro-
lactone (PCL)-gelatin (Gel)-biphasic calcium phosphate 
(BCP)  (A, B) electrospun scaffolds. Histological cross-sec-
tions of rat skull implanted with PCL-Gel-BCP and bone 
morphogenetic protein-2 (BMP-2)/PCL-Gel-BCP scaffolds, 
and a negative control (defect only) stained with H&E (C-H) 
and Masson’s trichrome (I-K) 4 weeks after implantation. 
Adapted from Kim et al., with permission from Mary Ann 
Liebert, Inc. [81].
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for tissue engineering, mimicing the topology of the 
extracellular matrix, thus improving cellular adhesion 
and proliferation [83]. However, hydrogels lack the me-
chanical strength needed for weight-bearing, which 
is a serious disadvantage, rendering it impossible to 
use them alone as bone regeneration systems in vivo. 
Hybrid scaffold systems in which ceramic scaffolds are 
loaded with hydrogels impart mechanical stability [84]. 
Hydrogels have been admixed with growth factors and 
drugs to enhance bone regeneration [85]. Various types 
of hydrogels, containing drugs or growth factors, are 
being actively developed, drug encapsulation and sub-
sequent release in the required zone are goals of such 
work.

Bone tissue engineering will potentially overcome 
many drawbacks of bone substitute scaffolds, including 
the lack of osteoinduction, poor vascularization, and 
delayed healing. It is possible to create tissues (includ-
ing bone) on preformed scaffolds loaded with stem 
cells, which can differentiate into any desired cell type. 
Bone marrow- or adipose tissue-derived mesenchymal 
stem cells (MSCs) have high proliferative capacities 
and can differentiate into osteoblasts; thus, they have 
been used in bone tissue engineering [86,87]. Tissue 
engineering using adipose tissue-derived MSCs is 
attractive, such cells are abundant and donor site mor-
bidity is minimal. Hydrogel scaffolds are indispensable 
in such work. Highly swollen hydrogels can suspend 
cells 3D and support nutrient diffusion to the cells. 
Additional modifications of hydrogels seek to enhance 
cell homing, by improving adhesion and attachment 
behaviors [88-90]; thesefeatures may enhance the bio-
mimetic environment for the encapsulated cells. Hybrid 
system of hydrogel loaded into β-TCP/HAp ceramic 
scaffold was shown to facilitate delivery and distribution 
of cells in a mechanically stable manner [91]. Several 
hydrogels, including those made of alginate, f ibrin 
glue, hyaluronic acid, chitosan, pluronic F12, thiol-nor-
bornene, and PEG-poly (l-alanine) thermogel, promoted 
bone formation induced by MSCs and osteoblasts [92-
95].

Often, use of a single polymeric hydrogel system 
is inadequate to overcome the drawbacks of rapid 
degradation and lack of stability in the physiological 
environment. Polyelectrolyte complexes (PECs) are 
formed by reaction between oppositely charged poly-

mers [96]. Both cationic and anionic polymers are 
biocompatible and biodegradable, and form a PEC 
via weak bonding between the anionic and cationic 
groups enhancing the stability of the scaffold. PECs 
prepared from natural polymers, such as polysaccha-
rides, have the additional advantages non-toxicity 
and bioabsorbability. Three-dimentional PEC scaf-
folds, fabricated via gas foaming, phase separation, 
electrospinning, or freeze-drying, have been used 
for cartilage repair and to reconstruct oral/maxillo-
facial defects [97,98]. Complexation can be enhanced 
by chemically modifying the functional groups 
via oxidization; this enhances interaction during 
polyelectrolyte complexation. Such scaffolds exhibit 
excellent degradation characteristics and form bone 
in vitro and in vivo. PEC scaffolds immobilize growth 
factors, allowing their controlled release to improve the 
functionality and performance of hydrogel scaffolds 
[96]. PEC microspheres, membranes, nanotubes, 
nanoparticles, fibers, and coarcevates have been devel-
oped, using different polysaccharides and polyamines 
[99-103]. These materials have been used for core encap-
sulation, surface adsorption, and matrix entrapment 
of various biomolecules and cells, including proteins, 
enzymes, and stem cells [104-107]. In particular, this 
approach has been successfully used to immobilize and 
deliver nanosized biomolecules, such as peptides and 
DNA plasmids [108,109].

Hydrogel systems have also been used as ECM-
like materials in conjunction with HAp/TCP hybrid 
composites. Hydrogels can be modified in many ways 
to alter hydrophilicity/hydrophobicity and enhance 
biological activity. Freeze drying of hydrogel systems 
creates a macroporous microstructure enhancing 
cel lular prol i ferat ion and grow th. Composite 
scaffolds featuring stabilized macroporous hydrogels 
loaded into a macroporous biphasic calcium phos-
phate scaffold have been used to impart ECM-like 
attributes [110] affording superior bone regeneration 
and hydrogel stability Such a system is shown in Fig. 5 
where Hyaluronic acid-Gelatin/BCP hybrid scaffold, 
where the biopolymer were loaded as hydro-gel, showed 
excellent bone formation potential. 
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OPTIMIZING THE MICROSTRUCTURE AND 
MORPHOLOGY OF BIOCERAMIC-BASED 
BONE SUBSTITUTES

Scaffold mechanical properties, such as compressive 
and bending strength, sharply decrease as porosity 
increases. Porous TCP ceramic scaffolds also lack frac-
ture toughness [111].  Reinforcing with particles, fibers, 
and whiskers can improve the mechanical properties 
of ceramic scaffold [112-114]. In situ formation of na-
no-HAp whisker-reinforced porous TCP scaffolds has 
been reported [115]. Enhanced mechanical (load-bear-
ing) and biological performance of PLGA-coated 
TCP composite scaffolds has been reported [116]. Po-
rous HAp scaffolds with functionally graded core/shell 
structures exhibit improved mechanical properties 
[117]. Calcium silicate ceramic scaffolds toughened 
with HAp whiskers have been used in bone tissue 
engineering [118]. Silk has been used as a biocohesive 
sacrificial binder during fabrication of HAp load-bear-
ing scaffolds [119]. Additive manufacturing (AM) tech-

niques have been developed to enable production of 
free-form porous scaffolds with custom-tailored archi-
tectures [120]. Commercially available AM techniques 
include selective laser sintering, stereolithography, 
fused deposition modeling, precision extrusion depo-
sition, and 3D printing. Detailed descriptions of the 
working principles, recent trends, and current limita-
tions of these techniques are provided in several review 
articles [121-123]. 

Porous bioactive glass scaffolds with oriented micro-
structures have been prepared by unidirectional freez-
ing of organic (camphene)-based suspensions [124]. Po-
rous material (based on spongy titanium granules) has 
been used in bone tissue engineering [125]. Granular 
bone substitutes with unidirectional channels have 
been fabricated using a f ibrous monolithic process; 
the pore geometry was regular and the mechanical 
strength increased [126]. Granular scaffolds have been 
prepared by electrospraying, microemulsion, and 
phase-separation methods.

Figure 5. Morphologies of a sponge bi-
phasic calcium phosphate (BCP) scaffold 
(A), a hyaluronic acid (HyA)-gel hydrogel 
(B), and a HyA-Gel/BCP scaffold (C), 
as revealed by scanning electron mi-
croscopy. (D) Histological sections of a 
rabbit femur implanted with HyA-Gel/
BCP; H&E staining reveals new bone 
formation (B), osteocytes (OC), and os-
teoblasts (OB). Most pores are filled with 
new bone after 1 month; bone growth 
continued for 3 months. (E) Histological 
sections of a rabbit femur implanted 
with HyA-Gel/BCP; Masson’s trichrome 
staining shows collagen (COL) deposited 
within the scaffold site (blue) and new 
bone formation (B) (red). Adapted from 
Nguyen et al., with permission from 
Mary Ann Liebert, Inc. [110].
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CLINICALLY AVAILABLE BONE SUBSTITUTES 
AND CLINICAL INVESTIGATIONS

Many commercial products are available, with specific 
applications, such as filling of bone voids, craniofacial 
bone voids; and facilitation of spinal fusion. These 
fillers have either been submitted to the US Food and 
Drug Administration for premarket approval, or have 
such approval. HAp ceramic grafts include Cerabone 
(Botiss biomaterials GmbH, Zossen, Germany), Endo-
bon (Biomet Inc., Wilrijk, Belgium), Ostim (Heraeus 
Kulzer, Hanau, Germany), and Pro Osteon 500 (Inter-
pore Cross, Irvine, CA, USA). ChronOS (Synthes, West 
Chester, PA, USA) and Vitoss (Orthovita, Malvern, PA, 
USA) are both made of TCP. Composite HAp and TCP 
ceramic grafts include BoneSave (Stryker, Hopkinton, 
MA, USA) and Mastergraft (Medtronic, Minneapolis, 
MN, USA). Calcibon (Biomet Inc.), ChronOS Inject, 
HydroSet (Stryker, Hopkinton, MA, USA), and Norian 
SRS (Synthes) are calcium phosphate cements. Bone 
Plast (Biomet Inc.), MIIG X3 (Wright Medical Technol-
ogy Inc., Memphis, TN, USA), OsteoSet (Wright Med-
ical Technology Inc.), and Stimulan (Biocomposites, 
Staffordshire, UK) are calcium sulfate-based systems. 
NovaBone (NovaBone, Jacksonville, FL, USA) and Vet-
ros (Biomedtrix, Boonton, NJ, USA) are bioactive glass-
based bone substitute. Many clinical evaluations have 
been performed using these systems. Maxillary sinus 
floor augmentation, reconstruction of periodontal os-
seous defects and the alveolar ridge, hip replacement, 
and anterior cervical fusion have been performed, and 
the results documented. Clinical trials, clinical series, 
and case reports have canvassed possible applications 
of tissue engineering using MSCs. Clinical trials on 
non-unions or delayed unions treated via cell therapy 
have been reported [127-130]. Several studies used cells 
and scaffolds [131,132]. These trials and studies have 
established the feasibility and (reasonable) safety of cell 
therapy-based approaches, and provide measures of the 
efficacy of bone healing.

CURRENT CHALLENGES AND FUTURE DIREC-
TIONS 

The mechanical stability and osteointegrity of scaf-

folds that must bear loads long-term are critical prob-
lems. Insuff icient vascularization of the interiors 
of thick bone substitutes, limiting cell ingrowth 
and survivability, is associated with poor osseointe-
gration. Mechanical strength is heavily dependent 
on porosity and geometry of the scaffold, and pore 
and strut dimensions. These features are primary 
dependent on the type of fabrication process, specially 
for ceramics. In this case it is difficult to guarantee 
microstructural integrity and the required surface 
characteristics when the pore geometry is intricate and 
irregular. However, new manufacturing techniques  
like additive manufacturing, are promising; pore 
dimensions can now be precisely controlled, reducing 
surface irregularities on porous ceramics scaffolds. 
Other tissues, such as vascular and nerve tissue, must 
also grow to allow maturation of new bone within 
the porous structure. Vascular infiltration, nutrient 
transport, and cell migration must be optimal in any 
scaffold. Angiogenic growth factors and vasculogenic 
cell sources are being actively researched to resolve the 
poor vascularization of large bone graft substitutes. 
Bone formation involves a complex cascade of signaling 
pathways triggering a range of cellular and biochemical 
processes. Use of BMP-2 has been widely considered 
as highly effective to facilitate this process. However, 
bone tissue regeneration involves many growth factors 
and chemokines; the optimal mix of such materials 
and their synergies with other growth factors in terms 
of release kinetics and dosage requires further work. A 
controlled drug delivery system treating or preventing 
infection, in combination with a bone graft substitute, 
may allow optimal bone regeneration.

Successful clinical application of bone substitutes 
requires interplay among cells, biological signals, and 
biomaterials. Many unanswered questions and unex-
plored frontiers remain for the optimal use of nano-
structured materials. Fundamental advances in in life 
and materials sciences are required.

CONCLUSIONS

Bone substitute development is a multidisciplinary 
research field, and significant improvements in current 
options, and new developments, are likely to increase 
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our basic understanding of the underlying principles. 
New biomaterials are dramatically broadening the 
options for advanced therapeutic remedies. Various 
material systems are being modified to elicit better 
biological and systemic responses. However, a perfect 
treatment option for bone defects remains elusive; the 
multidisciplinary approach seeks to overcome existing 
problems.
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