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Abstract. Systemic treatment options for soft tissue sarcomas 
(STSs) have remained unchanged despite the need for novel 
drug candidates to improve STS outcomes. Drug repurposing 
involves the application of clinical drugs to different diseases, 
reducing development time, and cost. It has also become a fast 
and effective way to identify drug candidates. The present 
study used a computational method to screen three drug‑gene 
interaction databases for novel drug candidates for the treat-
ment of several common STS histologic subtypes through 
drug repurposing. STS survival‑associated genes were gener-
ated by conducting a univariate cox regression analysis using 
The Cancer Genome Atlas survival data. These genes were 
then applied to three databases (the Connectivity Map, the 
Drug Gene Interaction Database and the L1000 Fireworks 
Display) to identify drug candidates for STS treatment. 
Additionally, pathway analysis and molecular docking were 
conducted to evaluate the molecular mechanisms of the candi-
date drug. Bepridil was identified as a potential candidate for 
several STS histologic subtype treatments by overlapping the 
screening results from three drug‑gene interaction databases. 
The pathway analysis with the Kyoto Encyclopedia of Genes 
and Genomes predicted that Bepridil may target CRK, fibro-
blast growth factor receptor 4 (FGFR4), laminin subunit β1 
(LAMB1), phosphoinositide‑3‑kinase regulatory subunit 2 
(PIK3R2), WNT5A, cluster of differentiation 47 (CD47), elas-
tase, neutrophil expressed (ELANE), 15‑hydroxyprostaglandin 
dehydrogenase (HPGD) and protein kinase cβ (PRKCB) to 

suppress STS development. Further molecular docking simu-
lation suggested a relatively stable binding selectivity between 
Bepridil and eight proteins (CRK, FGFR4, LAMB1, PIK3R2, 
CD47, ELANE, HPGD, and PRKCB). In conclusion, a compu-
tational method was used to identify Bepridil as a potential 
candidate for the treatment of several common STS histologic 
subtypes. Experimental validation of these in silico results is 
necessary before clinical translation can occur.

Introduction

Soft tissue sarcoma (STS) is a group of rare malignant tumors 
that occur in the connective tissue and account for ~10% 
of cancers in children and <1% of all adult solid malignant 
cancers (1). These tumors can originate throughout the human 
body, particularly in the extremities and the trunk. Although 
STS accounts for no >1% of all malignancies, it appears to be 
part of a heterogeneous disease, as >50 different histological 
subtypes have been identified (2,3). Recurrence occurs in ~50% 
of high‑grade, advanced, and metastatic STSs. For patients in 
relapse or with a delayed diagnosis, few long‑term effective 
agents are available. Advanced STS presents poor overall 
survival (OS) with the median OS being no >2 years (4,5). 
Meanwhile, molecular biomarkers to optimize therapy strate-
gies and overcome disease resistance remain unknown (6). 
Multidisciplinary approaches and specific molecular targeting 
therapies are recommended for STS patients, but the clinical 
impact of these therapies in certain common STS subtypes 
are unclear. Additional molecular pathway targets and treat-
ment strategies are required to improve the outcomes of this 
confounding disease.

Drug repurposing involves the application of clinical drugs 
to different diseases in order to reduce the development time 
and cost. It has become a fast and effective way to identify 
drug candidates (7). Drug repurposing can be facilitated by 
an established and searchable database that collects drug‑gene 
interactions from various sources (8‑10).

The Connectivity Map (CMap; https://portals.broadinstitute.
org/cmap/) is a web‑based computational drug‑repurposing tool 
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that allows users to screen bioactive small molecules through 
genome‑wide transcription expression data (8). The current 
version (build 02) of CMap includes >7,000 gene expression 
profiles from five human cell lines and reflects treatment with 
1,309 bioactive small molecules at different doses (11). Screening 
is achieved by comparing the reference profiles stored in the data-
base with the significantly differentially expressed genes of the 
user's targeted disease using a pattern‑matching algorithm. The 
screening results in a list of small molecule connectivity scores 
that range from ‑1 to +1. A small molecule‑expression profile 
that presents a strong negative correlation to a disease‑relevant 
gene expression signature indicates that the molecule may have 
a potentially therapeutic effect on the disease (12). CMap has 
successfully identified bioactive small molecules and combina-
tion therapies that have shown promise in the treatment of a 
variety of diseases (13‑19).

The Drug Gene Interaction Database (DGIdb; https://www.
dgidb.org), another drug repurposing web‑based application, 
contains >40,000 genes and >10,000 drugs that are involved 
in >15,000 drug‑gene interactions (9). These drug‑gene inter-
actions were collected using expert curation and text‑mining 
from the drug‑related databases DrugBank, Therapeutic 
Target Database, PharmGKB, Guide to Pharmacology, and 
ClinicalTrials.gov. In addition, bioinformatic analyses, such as 
gene ontology and pathway analysis, were used to categorize 
potentially druggable genes.

The L1000 Fireworks Display (L1000 FWD; http://amp.
pharm.mssm.edu/L1000FWD) is another web‑based applica-
tion that provides interactive visualization of >16,000 drug 
and gene expression signatures (10). In this database, potential 
drugs or bioactive small molecules can be easily identified 
when users enter the differentially expressed gene sets of a 
specific disease into the search box.

The present study sought to identify novel drug candidates 
for the treatment of several common histologic subtypes of STS 
(58 dedifferentiated liposarcoma, 99 leiomyosarcoma, 8 malig-
nant peripheral nerve sheath tumors, 25 myxofibrosarcoma, 
10 synovial sarcoma and 49 undifferentiated pleomorphic 
sarcoma). According to previous studies  (6,20‑23), these 
six common STS subtypes may have collective biological 
targets that can be recognized by one or more drugs. STS 
survival‑associated genes were identified using The Cancer 
Genome Atlas (TCGA) data and then applied to the CMap, 
DGIdb and L1000 FWD databases. The repetitions from 
the predicted drugs obtained from these three drug‑gene 
interaction databases were removed and over‑lapped in order 
to identify the final drug candidates for the STS histologic 
subtypes, thus providing more reliable results. A pathway 
analysis and molecular docking were conducted to evaluate 
the molecular mechanism of the candidate drug. Fig. 1 pres-
ents a schematic of the study design concept.

Materials and methods

STS survival‑associated mRNA screening. mRNA‑sequence 
data (Level  3) was downloaded from the STS samples in 
the TCGA database (http://cancergenome.nih.gov/). A total 
of 261  STS samples were collected (including 59  dedif-
ferentiated liposarcoma, 105 leiomyosarcoma, 9 malignant 
peripheral nerve sheath tumors, 25  myxofibrosarcoma, 

10 synovial sarcoma and 51 undifferentiated pleomorphic 
sarcomas, as well as 2 desmoid tumors). Subsequently, edgeR, 
a BioconductoR software package, was used to normalize 
the expression profile  (24). To obtain more reliable data, 
2 desmoid tumors and 9 tumor samples with survival times 
<90 days were excluded. Then, a univariate Cox regression 
was conducted using R software (3.4.2 version; R Foundation 
for Statistical Computing, Vienna, Austria) to obtain the STS 
survival‑associated genes. The eligible genes were divided 
into two groups (risk and protective) according to their hazard 
ratio values. The cut-off value was 1.

Potential drug predictions. The STS survival‑associated 
genes were separated into two files (risk factors and protec-
tive factors) in order to query the CMap, DGIdb, and L1000 
FWD databases. As the total number of upload tags cannot 
be >1,000 for CMap, only STS survival‑associated genes with 
P‑values <0.005 were selected. Prior to querying CMap, all 
of the gene symbols were converted to Affymetrix probe 
IDs using the Affymetrix site (https://www.affymetrix.
com/site/mainPage.affx). A total of 535 genes with a negative 
correlation with STS survival, and 178 genes with a positive 
correlation with STS survival were separately uploaded to 
CMap. In the CMap database, drugs with significantly nega-
tive scores were expected to be putative novel therapeutic 
indications for STS. The connectivity scores were calculated 
using the gene‑set‑enrichment analysis algorithm (9). A mean 
score of ≤0.65 was used to identify potential drug candidates.

For DGIdb, all of the STS survival‑associated gene 
symbols were pasted directly into the search box using the 
‘Search Drug‑Gene Interactions’ function button, and then 
the predictive drug list, TSV, was downloaded. For the L1000 
FWD database, all of the STS survival‑associated gene 
symbols were divided into differential expression gene sets (up 
and down) before querying the potential drugs. As with the 
CMap database, drugs with negative scores were expected to 
have putative novel therapeutic indications for STS.

To increase the reliability of the results, the candidate 
drugs were selected by overlapping the results from the three 
databases.

Identified target genes of the candidate drug. Genes regulated 
by the candidate drug were subsequently identified in the three 
databases using an in silico analysis. For the CMap database, 
the identified gene symbols were converted into Affymetrix 
probe identifiers and then tagged with the ‘up’ and ‘down’ 
files in. grp format prior to being uploaded to the CMap ‘quick 
query’ separately  (25). Significantly aberrantly expressed 
probes with amplitude values ≤0.67 or >0.67 were selected (an 
amplitude of ±0.67 l represents a two‑fold change between the 
treatment and the control). All of the predicted targets were 
included for the DGIdb and L1000 FWD databases as no 
threshold was provided.

Pathways analysis. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis was performed for the 
significantly aberrantly expressed probes of the candidate 
drugs using the WebGestalt database (http://www.webgestalt.
org/option.php) (26). The P‑value of each pathway was adjusted 
using the Hochberg (BH) procedure (27), and pathways with 
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P<0.05 were considered significant. Furthermore, target genes 
in pathways that previously been reported to be involved in 
tumor genesis or progression were uploaded to cBioPortal 
database (http://www.cbioportal.org/) to analyze their genetic 
alterations.

Molecular docking. Molecular docking is an efficient computa-
tional method which can rapidly calculate the binding potential 
of a small molecule (drug candidate) to a target protein. It has 
been widely used in computer‑aided drug discovery due to its 
speed and low cost (28,29). SystemsDock (http://systemsdock.
unit.oist.jp/) is a web server for network pharmacology‑based 
prediction and analysis, which employs two machine learning 
systems (Machine Learning Systems A and B) and integrates 
curated signaling networks, bioinformatics databases and 
molecular virtual docking simulation to comprehensively 
and rapidly evaluate potential binding affinities of drug 
candidates against target proteins (30). Compared with other 
docking programs  (31,32), it provides a major advance in 
quality and reliability of assessing protein‑ligand interaction. 
However, systemsDock taking protein structure availability 
and binding site certainty into consideration, and the protein 
residues involved in the binding interaction are automatically 
identified by exploring the position where the biggest native 
ligand is bound. Ducking score, the indication of binding 
strength, is a negative logarithm of the experimental disso-
ciation/inhibition constant (pKd/pKi) that ranges from 0‑10 
(i.e., from weak to strong). A good accuracy level (80‑83%) 
was observed when the cut-off scores were in the range of 
4.82‑6.11 (pKd), which is conventionally used to classify 
ligand binding activity.

In the present study, molecular docking was singly 
performed on the proteins of several KEGG pathways with 
the candidate drug using systemsDock to check whether the 
candidate drug may have an anti‑STS function. The docking 
simulation was carried out in three steps: i) Specifying the 
proteins and binding sites by uploading the names or Protein 
Data Bank (PDB; https://www.rcsb.org/) IDs of the proteins; 
ii)  preparing the small molecules (drugs) for the test by 
uploading their structure files in 2D/3D SDF, Mol2 or SMILES 
formats; and iii) clicking the ‘run’ button.

Results

Identification of STS survival‑associated genes in the TCGA 
database. A total of 2,842 survival‑associated genes were 
extracted from 248 sample (58 dedifferentiated liposarcoma, 
99  leiomyosarcoma, 7  malignant peripheral nerve sheath 
tumors, 25  myxofibrosarcoma, 10  synovial sarcoma and 
49 undifferentiated pleomorphic sarcomas) mRNA profiles 
in the TCGA database using a univariate Cox regression. As 
the CMap database could not process >1,000 uploaded tags, 
SPS survival‑associated genes with P<0.005 were selected 
to screen the small molecules. Among those genes, 535 were 
demonstrated to be risk factors for STS, while 178 were 
protective factors.

STS‑targeted screening for candidate drugs. According to 
the screening conditions mentioned in the methods above, 79, 
693 and 2,327 potential drugs were screened from the CMap, 
DGIdb and L1000 FWD databases, respectively. When the 
results of this screening were overlapped, only Bepridil was 
identified in all three databases simultaneously (Fig. 2). For 
the CMap database, gene‑expression changes in three kinds 
of human cell lines that were treated with Bepridil partially 
matched those in the STS survival‑associated genes. For the 
L1000 FWD database, similar findings were identified for two 
human cell lines (Table I). In the DGIdb database, Bepridil 
was identified by mapping the STS survival‑associated genes 
with the Guide to Pharmacology database.

Bepridil is a long‑acting, non‑selective calcium‑channel 
blocker with significant antianginal activity. As Bepridil has 
been demonstrated to cause ventricular arrhythmias, it is no 
longer used in clinical practice (33). To determine whether 
Bepridil could be repurposed for the treatment of STS, 
specific targets were identified for further analysis. As a result, 
57, 19 and 434 genes were reported to be regulated by Bepridil 
in the CMap, DGIdb and L1000 FWD databases, respectively. 
In total, 510  potential Bepridil targets were gathered for 
subsequent pathway analysis.

KEGG functional pathway analysis of Bepridil targets. 
Next, the KEGG pathways in which the Bepridil target 

Table I. Cell lines treated with Bepridil in the CMap and L1000 FWD databases.

Database	 Mean score	 Cell line	 Dose (µm)	 Score	 n	 P‑value

CMap	‑ 0.659				    4	 0.071
		  MCF7	 10	‑ 0.677	 2	 0.101
		  PC3	 10	‑ 0.756	 1	‑
		  HL60	 10	‑ 0.525	 1	‑
L1000FWD	‑ 0.0167				    2	‑
		  HCC515	 10	 N/A	 1	 0.001
		  VCaP	 10	 N/A	 1	 0.002

CMap, Connectivity Map; L1000FWD, L1000 Fireworks Display; MCF7, human breast cancer cell line; PC3, human prostate cancer cell line; 
HL60, human leukemia cell line; HCC515, human lung adenocarcinoma cell line; VCaP, human prostate cancer cell line; N, number of cell 
lines.

https://www.spandidos-publications.com/10.3892/or.2019.7033
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genes were likely involved were explored. WebGestalt, a 
functional enrichment analysis web tool, was used to conduct 
the pathway analysis. Thirty pathways were identified as 
associated with the Bepridil targets  (Table  II). Several of 
these pathways were previously reported to be involved in 
tumor genesis or progression (34‑36), including epidermal 

growth factor receptor  (EGFR) tyrosine kinase inhibitor 
resistance (hsa01521), signaling pathways regulating stem cell 
pluripotency (hsa04550), extracellular matrix (ECM)‑receptor 
interaction  (hsa04512), focal adhesion  (hsa04510), tran-
scriptional misregulation in cancer  (hsa05202) and the 
phosphatidylinositol 3 kinase‑protein kinase B (PI3K‑Akt) 

Figure 2. Venn diagram depicting potential drugs in the CMap, DGIdb and L1000 FWD databases. CMap, Connectivity Map; DGIdb, Drug‑gene interaction 
database; L1000FWD, L1000 Fireworks Display.

Figure 1. Schematic depicting a flow diagram of the screening and analysis conducted in the study. Panels 1, 2 and 5 present screenshots from The Cancer 
Genome Atlas database and three drug‑gene interaction database homepages. Panels 3, 4, 6 and 7 present certain results of the present study. SARC, soft tissue 
sarcoma; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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signaling pathway (hsa04151). Overall survival analysis of 
the genes clustered in the above‑noted pathways revealed that 

CRK, fibroblast growth factor receptor 4 (FGFR4), laminin 
subunit β1 (LAMB1), phosphoinositide‑3‑kinase regulatory 

Figure 4. Genetic alteration analysis of soft‑tissue sarcoma survival‑associated genes from The Cancer Genome Atlas dataset. FGFR4, fibroblast growth 
factor receptor 4; LAMB1, laminin subunit β1; PIK3R2, phosphoinositide‑3‑kinase regulatory subunit 2; CD47, cluster of differentiation 47; ELANE, elastase, 
neutrophil expressed; HPGD, 15‑hydroxyprostaglandin dehydrogenase; PRKCB, protein kinase cβ.

Figure 3. Significant prognostic values of genes that are reportedly involved in tumor genesis or progression pathways. (A) CRK (B) FGFR4. (C) LAMB1. 
(D) PIK3R2. (E) WNT5A. (F) CD47. (G) ELANE. (H) HPGD. (I) PRKCB. FGFR4, fibroblast growth factor receptor 4; LAMB1, laminin subunit β1; PIK3R2, 
phosphoinositide‑3‑kinase regulatory subunit 2; CD47, cluster of differentiation 47; ELANE, elastase, neutrophil expressed; HPGD, 15‑hydroxyprostaglandin 
dehydrogenase; PRKCB, protein kinase cβ; TPM, trans per million; HR, hazard ratio.

https://www.spandidos-publications.com/10.3892/or.2019.7033
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subunit 2 (PIK3R2) and WNT5A were likely STS risk factors, 
while overexpression of cluster of differentiation 47 (CD47), 
elastase, neutrophil expressed  (ELANE), 15‑hydroxypros-
taglandin dehydrogenase  (HPGD) and protein kinase cβ 
(PRKCB) was correlated with a better prognosis in STS 
tissues (Fig. 3). The genetic alteration of these 9 genes was also 
evaluated using one TCGA dataset (with 265 STS samples) in 
order to explore how they may function in STS. The results 
demonstrated that the alterations in the other genes mainly 
appeared as mRNA upregulation (Fig. 4), except for the altera-
tions in ELANE and HPGD, which were either amplifications 
or deep deletions. This suggests that changes in gene expres-
sion may allow these 9 genes to function in STS. In addition, 
mutually exclusive analysis revealed 18 gene pairs with mutu-
ally exclusive alterations, and 18 gene pairs with co‑occurrent 
alterations; however, they were all non‑significant (adjusted 
P>0.05; data not shown).

Molecular docking. Finally, to explore how Bepridil sup‑ 
presses or prevents carcinogenic progression, the proteins 
of 8 STS survival‑associated genes (CRK, FGFR4, LAMB1, 
PIK3R2, WNT5A, CD47, ELANE, HPGD and PRKCB) 
were analyzed further using molecular docking. Notably, 
compared with the cut-off scores  (4.82‑6.11), except the 
protein of WNT5A, another 8 proteins all exhibited stable 
docking  (medium‑to‑good binding) results with Bepridil. 
The lowest docking score was 5.017 for CRK, while the 
other protein‑ligand interaction scores were  >5.1. The 
highest docking simulation was found between HPGD and 
Bepridil  (docking score, 5.702). The PDB IDs, docking 
compound, and docking scores are presented in Table III 
and Fig.  5. The detailed protein‑ligand interactions of 
the docking pose (3D and 2D structures) are presented in 
Figs. 6 and 7. Finally, a network was constructed to display 
the association between the pathways, targets and candidate 
drug Bepridil (Fig. 8).
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Table III. Docking simulation results for Bepridil and proteins 
that are reportedly involved in tumor genesis or progression.

		  Docking scores
Gene/protein name	 PDB ID	 (pKd/pKi)

CRK/CRK	 1JU5	 5.017
FGFR4/FGFR4	 4UXQ	 5.146
LAMB1/LAMB1	 5XAU	 5.417
PIK3R2/PIK3R2	 2XS6	 5.414
CD47/CD47	 2JJS	 5.436
ELANE/ELANE	 4WVP	 5.539
HPGD/HPGD	 2GDZ	 5.702
PRKCB/PRKCB	 2I0E	 5.195

PDB ID, Protein data bank ID; FGFR4, fibroblast growth 
factor receptor  4; LAMB1, laminin subunit  β1; PIK3R2, 
phosphoinositide‑3‑kinase regulatory subunit  2; CD47, cluster of 
differentiation  47; ELANE, elastase, neutrophil expressed; HPGD, 
15‑hydroxyprostaglandin dehydrogenase; PRKCB, protein kinase cβ.

https://www.spandidos-publications.com/10.3892/or.2019.7033
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Discussion

Recent studies have tended to rely on a panel of cancer‑related 
genes to predict potential drugs for diseases  (12,14,17); 
however, this has not yet been successfully performed for STS. 
Therefore, the present study used a panel of cancer‑related 
genes to predict potential drugs for several STS subtypes. 

Previous studies using this methodology have yielded several 
novel candidates and several clinical drugs have been applied 
successfully to different diseases using the drug‑repurposing 
strategy. To identify potential drug candidates, studies typi-
cally focus on the genomic signatures that are available 
in electronic patient records, as well as targets of drugs. 
For example, Paik et al  (37) used computational methods 

Figure 6. Molecular binding interactions of Bepridil and the proteins that are reportedly involved in tumor genesis or progression displayed in 3D structures. 
(A) CRK. (B) Fibroblast growth factor receptor 4. (C) Laminin subunit β1. (D) Phosphoinositide‑3‑kinase regulatory subunit 2. (E) Cluster of differentiation 47. 
(F) Elastase, neutrophil expressed. (G) 15‑hydroxyprostaglandin dehydrogenase. (H) Protein kinase cβ. All the protein residues presented in figures were the 
one that identified to involve in the binding interaction.

Figure 5. Docking prediction results displayed in an interactive histogram. Docking scores for Bepridil and the native ligand are provided for each protein. 
X‑axis labels are presented as Protein Data Bank ID (protein name). FGFR4, fibroblast growth factor receptor 4; LAMB1, laminin subunit β1; PIK3R2, 
phosphoinositide‑3‑kinase regulatory subunit 2; CD47, cluster of differentiation 47; ELANE, elastase, neutrophil expressed; HPGD, 15‑hydroxyprostaglandin 
dehydrogenase; PRKCB, protein kinase cβ.
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Figure 8. A network visualization of the association between the identified pathways, targets and candidate drug. Green circles represent the genes clustered 
in different pathways, red circles represent both the genes clustered in different pathways and the Bepridil targets. FGFR4, fibroblast growth factor receptor 4; 
LAMB1, laminin subunit β1; PIK3R2, phosphoinositide‑3‑kinase regulatory subunit 2; CD47, cluster of differentiation 47; ELANE, elastase, neutrophil 
expressed; HPGD, 15‑hydroxyprostaglandin dehydrogenase; PRKCB, protein kinase cβ.

Figure 7. Molecular binding interactions of Bepridil, and the proteins that are reportedly involved in tumor genesis or progression displayed in 2D structures. (A) CRK. 
(B) Fibroblast growth factor receptor 4. (C) Laminin subunit β1. (D) Phosphoinositide‑3‑kinase regulatory subunit 2. (E) Cluster of differentiation 47. (F) Elastase, 
neutrophil expressed. (G) 15‑hydroxyprostaglandin dehydrogenase. (H) Protein kinase cβ. All protein residues presented were involved in the binding interaction.

https://www.spandidos-publications.com/10.3892/or.2019.7033
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to predict that terbutaline sulfate, an anti‑asthmatic, could 
be used to treat amyotrophic lateral sclerosis. Similarly, 
Dudley et al (38) used an in silico computational approach to 
discover a novel drug therapy for inflammatory bowel disease 
that uses the public gene‑expression profiles of the disease 
and the potential targets of drugs. These results suggested that 
using cancer‑related genes to predict potential drugs may be 
a promising method for drug repurposing. Changes in gene 
expression are a significant factor in disease genesis and 
progression Analyzing these changes can identify potential 
targets for improving therapeutic intervention. In the present 
study, survival‑correlated gene expression signatures were used 
to make in silico predictions of new indications for approved 
drugs. Then, three drug‑gene interaction databases (CMap, 
DGIdb, and L1000 FWD) were used to identify potential drugs 
for STS histologic subtypes. Linking disease‑drug profiles 
based on gene expression signatures is a well‑established 
modality for drug repurposing (8,9,10). CMap used several 
human tumor cell lines to generate gene‑expression profiles 
of >1,300 compounds, and the predicted drugs were ranked 
by considering multiple parameters, such as the mean score, 
enrichment score, match specificity and P‑value, to enhance 
the stability and reliability of the predicted results. The devel-
opers of CMap and other groups (26,39) have demonstrated 
that CMap is a potent tool for identifying compounds with 
medicinal benefits for a wide range of diseases. L1000 FWD 
is a similar drug‑gene database, but its prediction results only 
provide the drug name and similarity score. While drug‑gene 
interactions in the DGIdb database were collected using expert 
curation and text‑mining of data from the drug‑related database 
DrugBank, the Therapeutic Target Database, PharmGKB, and 
ClinicalTrials.gov provide an alternative method to predict 
drugs for STS histologic subtypes. Therefore, the predicted 
drugs in these three databases were combined in order to obtain 
more stable and reliable results. After mapping the targets of 
these molecules in CMap and querying the DGIdb and L1000 
FWD databases with STS survival‑associated genes, Bepridil 
was discovered to be a drug candidate for several common 
histologic subtypes of STS, which appeared simultaneously in 
all three databases.

Bepridil is a long‑acting, non‑selective, calcium‑channel 
blocker that was once used as an antianginal treatment. It 
induces significant coronary vasodilation and has modest 
peripheral effects (40). However, Bepridil is no longer used 
in clinical practice as it has been implicated in ventricular 
arrhythmias. As novel drug discovery is time consuming and 
risky, identifying novel indications for known drugs (drug 
repurposing) has become an effective and innovative method 
for disease therapy. Therefore, it was explored in the present 
study whether Bepridil could be repurposed for tumor therapy. 
A literature search revealed that in the 1990s, Bepridil was 
revealed to be effective for treating different types of tumors. 
For example, an early study conducted by van Kalken et al (41) 
demonstrated that Bepridil combined with anthracyclines 
could reverse anthracycline resistance in cancer patients. Later, 
Lee et al (42) evaluated the effects of Bepridil in vitro and 
similarly suggested that it could be combined with Benzamil 
to effectively inhibit the growth of human brain tumor cells. 
More recently, a study conducted by Baldoni et al (43) demon-
strated that Bepridil could be used for anti‑NOTCH1 targeted 

therapy for patients with chronic lymphocytic leukemia. 
However, Bepridil has not been reported as an anticancer agent 
for STS. The present study combined the screening results of 
three drug‑gene interaction databases that used different algo-
rithms. All three databases indicated that Bepridil may act as 
an anticancer agent for several common histologic subtypes of 
STS. If it was truly confirmed that Bepridil could inhibit the 
proliferation of tumor cells in in vitro STS cell lines and in vivo 
orthotopic PDX animal models, or if it were used for similar 
clinical in the future, further studies should be conducted to 
rationalize the potential negative side-effects of Bepridil, such 
as by combining antiarrhythmic agents and Bepridil. Further 
studies would then be required to identify an appropriate 
method to overcome the potential side-effects of Bepridil. As 
Bepridil has previously been used in clinical practice, the time 
and cost of reintroducing this compound into the market may 
be substantially reduced.

Potential Bepridil targets and pathways were predicted 
in order to identify potential correlations between Bepridil 
and other common therapies for STS histologic subtypes. 
This analysis resulted in the identification of 510 targets and 
30 pathways, several of which were reported to be involved 
in cancer occurrence or progression. Using the TCGA data, 
the overall survival analysis of the genes clustered in these 
pathways revealed that CRK, FGFR4, LAMB1, PIK3R2 
and WNT5A (characterized by focal adhesion, signaling 
pathways regulating stem cell pluripotency, EGFR tyrosine 
kinase inhibitor resistance, ECM‑receptor interaction and the 
PI3K‑Akt signaling pathway) were likely risk factors for STS, 
while CD47, ELANE, HPGD and PRKCB (characterized by 
ECM‑receptor interaction, transcriptional misregulation in 
cancer, focal adhesion and EGFR tyrosine kinase inhibitor 
resistance pathways) were likely protective factors in STS 
tissues.

These 9 genes were reported to serve several roles in malig-
nances. For example, CRK is an adaptor protein that can affect 
cancer cell migration and invasion (44,45). The dysregulation 
of CRK expression has been implicated in various aggressive 
human malignances, including synovial sarcoma, bladder 
cancer and breast cancer (46‑48). These findings suggest that 
CRK may have targeted‑therapy potential in a wide range of 
tumors. The FGFR protein family is primarily involved in 
angiogenesis, the activation of which regulates various onco-
genic processes (49). FGFR4, one of the FGF receptors, was 
also demonstrated to be involved in several important signaling 
pathways, including the WNT signaling pathway, the MAPK 
signaling pathway and the PI3K‑Akt signaling pathway (50). 
FGFR‑targeted therapy is also considered a promising strategy 
in refractory cancer treatment  (51). Lin et al  (52) reported 
that LAMB1 performed better as a diagnostic antigen rather 
than a carcino‑embryonic antigen for colorectal cancer and 
may serve as a potential serological biomarker for digestive 
cancer diagnosis. However, the role of LAMB1 in STS has not 
been reported. In the present study, it was demonstrated that 
overexpression of LAMB1 was correlated with poor prognosis 
in patients with STS. PIK3R2 is involved in cell proliferation, 
migration and survival (53). PIK3R2 was recently reported to 
be targeted by microRNA‑126‑3p and to suppress Kaposi's 
sarcoma cell proliferation (54). WNT5A belongs to the WNT 
gene family, which encodes secreted signaling proteins and 
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has been implicated in oncogenesis and several developmental 
processes (55,56). Ye et al (57) reported that CD47 may be a 
prognostic marker for oral squamous cell carcinoma. ELANE 
has been correlated with neutropenia outcomes (58). HPGD has 
been demonstrated to participate in a variety of physiological 
and pathological metabolic processes. It has also been identified 
as a novel therapeutic target in prostate cancer (59,60) and is 
involved in colorectal cancer progression (61). When these nine 
genes were queried in the cBioPortal database, it was reported 
that nearly all were genetically altered in patients with STS.

SystemsDock is a web‑based tool for network pharma-
cology‑based prediction and analysis. Hsin et al (30) applied 
the receiver operating characteristic (ROC) to demonstrate 
that systemsDock possesses a well‑designed scoring func-
tion [area under the ROC curve (AUC)=0.84] for molecular 
docking to evaluate protein‑ligand binding activity. According 
to the conventional rating, 0.9≤AUC≤1 is considered excellent, 
0.80≤AUC<0.9 is good, 0.70≤AUC<0.8 is fair, 0.50≤AUC<0.7 
is poor and AUC<0.5 represents failure. This tool also considers 
protein structure availability and binding site certainty, which 
allows the docking simulation of the described proteins and 
their ligand selectivity to occur. According to the software 
description, a cut-off score in the range of 4.82‑6.11 indicates 
reliable accuracy (80‑83%) when evaluating protein‑ligand 
binding activity. When systemsDock was applied to test the 
protein‑ligand binding activity of Bepridil and screen out 
the 9 candidate proteins from the KEGG pathways, it was 
demonstrated that the lowest docking score was 5.017, which 
suggested that Bepridil had relatively stable binding selec-
tivity with all of the tested proteins. These results indicate 
that Bepridil has the potential to become an STS candidate 
drug. This theory should be confirmed with further in vitro 
and in vivo experiments. If Bepridil could be repurposed for 
STS treatment, this may provide a significant benefit to STS 
patients, as well as reduce development time and cost.

In conclusion, the present study used a computational 
method that combined three drug‑gene interaction databases 
and a gene‑expression signature to explore drug repositioning. 
As a result, Bepridil was identified as a potential candidate for 
the treatment of STS. A KEGG pathway analysis predicted that 
Bepridil may target CRK, FGFR4, LAMB1, PIK3R2, CD47, 
ELANE, HPGD and PRKCB to suppress STS development. 
The pathways associated with these targets were demonstrated 
to serve crucial roles in cancer or cancer treatments. Molecular 
docking simulations suggested that these proteins could 
combine with Bepridil in a stable manner. These findings 
provide rationale that Bepridil may be developed for the treat-
ment of STS. However, the present study has some limitations. 
For instance, it derives STS survival‑associated genes from 
the TCGA database alone; therefore, it would be desirable 
to increase the power of the analysis by including additional 
datasets. Furthermore, the present study was simply based on 
computational approaches without using STS cell lines and 
PDX models for further validation. Additionally, when evalu-
ating molecular docking, a control experiment by assessing 
the binding strength of a known inhibitor and Bepridil was 
not set, as inhibition constant was built‑in in the systemsDock 
database. The present authors intend to remedy this limita-
tion in the future using in vitro and in vivo methodologies. 
Although drug repurposing using the computational approach 

does not definitively measure the effects of a treatment, it 
allows the safety profiling stage to be bypassed, which results 
in lower costs and better time efficiency. Therefore, an initial 
genomics‑based recommendation may be made rapidly, and 
refinements or changes can be made when further in vitro and 
in vivo results become available.

Acknowledgments

Not applicable.

Funding

The present study was supported by the Guangxi Medical 
University Training Program for Distinguished Young 
Scholars (GC), the Medical Excellence Award funded by 
the Creative Research Development Grant from the First 
Affiliated Hospital of Guangxi Medical University (GC), the 
Guangxi Zhuang Autonomous Region Health, the Family 
Planning Commission Self‑Financed Scientific Research 
Project (grant. no. Z20180979), and the Innovation Project of 
Guangxi Graduate Education (grant no. YCBZ2018038).

Availability of data and materials

The datasets used and/or analyzed during the present study are 
available from the corresponding author upon reasonable request.

Authors' contributions

XY, JM and GC were involved in the study design. XY contrib-
uted to the preparation of the manuscript and data analysis. 
WTH, HYW, RQH and AGL contributed to the data analysis 
and prepared the figures and tables. JM and GC supervised 
and corrected the manuscript. All authors read and approved 
the final manuscript and agree to be accountable for all aspects 
of the work.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

  1.	 Hoang NT, Acevedo LA, Mann MJ and Tolani B: A review of 
soft‑tissue sarcomas: Translation of biological advances into 
treatment measures. Cancer Manag Res 10: 1089‑1114, 2018.

  2.	Burningham Z, Hashibe M, Spector L and Schiffman JD: The 
epidemiology of sarcoma. Clin Sarcoma Res 2: 14, 2012.

  3.	Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA 
Cancer J Clin 68: 7‑30, 2018.

  4.	Koliou P, Karavasilis V, Theochari M, Pollack SM, Jones RL 
and Thway K: Advances in the treatment of soft tissue sarcoma: 
Focus on eribulin. Cancer Manag Res 10: 207‑216, 2018.

https://www.spandidos-publications.com/10.3892/or.2019.7033


YANG et al:  DRUG REPURPOSING FOR TREATMENT OF SEVERAL STS HISTOLOGIC SUBTYPES2252

  5.	Bourcier K and Italiano A: Newer therapeutic strategies for 
soft‑tissue sarcomas. Pharmacol Ther 188: 118‑123, 2018.

  6.	Recine F, Bongiovanni A, Riva N, Fausti V, De Vita A, Mercatali L, 
Liverani C, Miserocchi G, Amadori D and Ibrahim T: Update on 
the role of trabectedin in the treatment of intractable soft tissue 
sarcomas. Onco Targets Ther 10: 1155‑1164, 2017.

  7.	 Oliveira IM, Borges A, Borges F and Simoes M: Repurposing 
ibuprofen to control Staphylococcus aureus biofilms. Eur J Med 
Chem 166: 197‑205, 2019.

  8.	Qu XA and Rajpal DK: Applications of connectivity map in drug 
discovery and development. Drug Discov Today 17: 1289‑1298, 
2012.

  9.	 Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, 
Wollam A, Spies NC, Griffith OL and Griffith M: DGIdb 3.0: A 
redesign, and expansion of the drug‑gene interaction database. 
Nucleic Acids Res 46: D1068‑D1073, 2018.

10.	 Wang Z, Lachmann A, Keenan AB and Ma'ayan A: L1000FWD: 
Fireworks visualization of drug‑induced transcriptomic signa-
tures. Bioinformatics 34: 2150‑2152, 2018.

11.	 Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, 
Lerner J, Brunet JP, Subramanian A, Ross KN, et al: The connec-
tivity map: Using gene‑expression signatures to connect small 
molecules, genes, and disease. Science 313: 1929‑1935, 2006.

12.	Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P and Agarwal P: 
Computational drug repositioning: From data to therapeutics. 
Clin Pharmacol Ther 93: 335‑341, 2013.

13.	 Zhong Y, Chen EY, Liu R, Chuang PY, Mallipattu SK, Tan CM, 
Clark NR, Deng Y, Klotman PE, Ma'ayan A, et al: Renoprotective 
effect of combined inhibition of angiotensin‑converting enzyme, 
and histone deacetylase. J Am Soc Nephrol 24: 801‑811, 2013.

14.	 Karube K, Tsuzuki S, Yoshida N, Arita K, Kato H, Katayama M, 
Ko YH, Ohshima K, Nakamura S, Kinoshita T, et al: Compre
hensive gene expression profiles of NK cell neoplasms identify 
vorinostat as an effective drug candidate. Cancer Lett 333: 47‑55, 
2013.

15.	 Dyle MC, Ebert SM, Cook DP, Kunkel SD, Fox DK, Bongers KS, 
Bullard  SA, Dierdorff  JM and Adams  CM: Systems‑based 
discovery of tomatidine as a natural small molecule inhibitor of 
skeletal muscle atrophy. J Biol Chem 289: 14913‑14924, 2014.

16.	 Gao L, Zhao G, Fang JS, Yuan TY, Liu AL and Du GH: Discovery 
of the neuroprotective effects of alvespimycin by computational 
prioritization of potential anti‑Parkinson agents. FEBS J 281: 
1110‑1122, 2014.

17.	 Chen YT, Xie JY, Sun Q and Mo WJ: Novel drug candidates 
for treating esophageal carcinoma: A study on differentially 
expressed genes, using connectivity mapping, and molecular 
docking. Int J Oncol 54: 152‑166, 2019.

18.	 Drullion C, Marot G, Martin N, Desle J, Saas L, Salazar‑Cardozo C, 
Bouali F, Pourtier A, Abbadie C and Pluquet O: Pre‑malignant 
transformation by senescence evasion is prevented by the PERK 
and ATF6alpha branches of the Unfolded protein response. 
Cancer Lett 438: 187‑196, 2018.

19.	 Tang X, Xu Y, Lu L, Jiao Y, Liu J, Wang L and Zhao H: Identi
fication of key candidate genes, and small molecule drugs in 
cervical cancer by bioinformatics strategy. Cancer Manag 
Res 10: 3533‑3549, 2018.

20.	Christinat A and Leyvraz S: Role of trabectedin in the treatment 
of soft tissue sarcoma. Onco Targets Ther 2: 105‑113, 2009.

21.	 Demetri  GD, von  Mehren  M, Jones  RL, Hensley  ML, 
Schuetze  SM, Staddon  A, Milhem  M, Elias  A, Ganjoo  K, 
Tawbi H, et al: Efficacy and safety of trabectedin or dacarbazine 
for metastatic liposarcoma or leiomyosarcoma after failure of 
conventional chemotherapy: Results of a Phase III randomized 
multicenter clinical trial. J Clin Oncol 34: 786‑793, 2016.

22.	Xie L, Guo W, Wang Y, Yan T, Ji T and Xu J: Apatinib for 
advanced sarcoma: Results from multiple institutions' off‑label 
use in China. BMC Cancer 18: 396, 2018.

23.	Zhu B, Li J, Xie Q, Diao L, Gai L and Yang W: Efficacy and 
safety of apatinib monotherapy in advanced bone and soft tissue 
sarcoma: An observational study. Cancer Biol Ther 19: 198‑204, 
2018.

24.	Li  S, Chen  X, Liu  X, Yu  Y, Pan  H, Haak  R, Schmidt  J, 
Ziebolz  D and Schmalz  G: Complex integrated analysis of 
lncRNAs‑miRNAs‑mRNAs in oral squamous cell carcinoma. 
Oral Oncol 73: 1‑9, 2017.

25.	Brum AM, van de Peppel J, Nguyen L, Aliev A, Schreuders‑ 
Koedam M, Gajadien T, van der Leije CS, van Kerkwijk A, 
Eijken M, van Leeuwen JPTM, et al: Using the connectivity map 
to discover compounds influencing human osteoblast differentia-
tion. J Cell Physiol 233: 4895‑4906, 2018.

26.	Wang J, Vasaikar S, Shi Z, Greer M and Zhang B: WebGestalt 
2017: A more comprehensive, powerful, flexible, and interac-
tive gene set enrichment analysis toolkit. Nucleic Acids Res 45: 
W130‑W137, 2017.

27.	 Yoav Benjamini and Yosef Hochberg: Controlling the false 
discovery rate: A practical and powerful approach to multiple 
testing. J R Stat Soc Series B 57: 289‑300, 1995.

28.	Vilar S, Sobarzo‑Sanchez E, Santana L and Uriarte E: Molecular 
docking and drug discovery in beta‑Adrenergic receptors. Curr 
Med Chem 24: 4340‑4359, 2017.

29.	 Eswari JS, Dhagat S, Kaser S and Tiwari A: Homology modeling 
and molecular docking studies of bacillomycin and iturin 
synthetases with novel ligands for the production of therapeutic 
lipopeptides. Curr Drug Discov Technol 15: 132‑141, 2018.

30.	Hsin  KY, Matsuoka  Y, Asai  Y, Kamiyoshi  K, Watanabe  T, 
Kawaoka  Y and Kitano  H: systemsDock: A web server for 
network pharmacology‑based prediction and analysis. Nucleic 
Acids Res 44: W507‑W513, 2016.

31.	 Jain AN: Surflex: Fully automatic flexible molecular docking 
using a molecular similarity‑based search engine. J Med Chem 46: 
499‑511, 2003.

32.	Zsoldos Z, Reid D, Simon A, Sadjad BS and Johnson AP: eHiTS: 
An innovative approach to the docking and scoring function 
problems. Curr Protein Pept Sci 7: 421‑435, 2006.

33.	 Ma F, Takanari H, Masuda K, Morishima M and Ono K: Short‑ 
and long‑term inhibition of cardiac inward‑rectifier potassium 
channel current by an antiarrhythmic drug bepridil. Heart 
Vessels 31: 1176‑1184, 2016.

34.	 Vitiello PP, Cardone C, Martini G, Ciardiello D, Belli V, Matrone N, 
Barra G, Napolitano S, Della Corte C, Turano M, et al: Receptor 
tyrosine kinase‑dependent PI3K activation is an escape mecha-
nism to vertical suppression of the EGFR/RAS/MAPK pathway 
in KRAS‑mutated human colorectal cancer cell lines. J Exp Clin 
Cancer Res 38: 41, 2019.

35.	 Ge W, Wang SH, Sun B, Zhang YL, Shen W, Khatib H and 
Wang X: Melatonin promotes Cashmere goat (Capra hircus) 
secondary hair follicle growth: A view from integrated analysis 
of long non‑coding and coding RNAs. Cell Cycle 17: 1255‑1267, 
2018.

36.	Doi T, Yang JC, Shitara K, Naito Y, Cheng AL, Sarashina A, 
Pronk LC, Takeuchi Y and Lin CC: Phase I study of the focal 
adhesion kinase inhibitor BI 853520 in Japanese and Taiwanese 
patients with advanced or metastatic solid tumors. Target 
Oncol: Feb 6, 2019 (Epub ahead of print). doi: 10.1007/s11523-
019‑00620-0.

37.	 Paik H, Chung AY, Park HC, Park RW, Suk K, Kim J, Kim H, 
Lee K and Butte AJ: Repurpose terbutaline sulfate for amyo-
trophic lateral sclerosis using electronic medical records. Sci 
Rep 5: 8580, 2015.

38.	Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, 
Morgan AA, Sarwal MM, Pasricha PJ and Butte AJ: Compu
tational repositioning of the anticonvulsant topiramate for 
inflammatory bowel disease. Sci Transl Med 3: 96ra76, 2011.

39.	 Musa  A, Ghoraie  LS, Zhang  SD, Glazko  G, Yli‑Harja  O, 
Dehmer M, Haibe‑Kains B and Emmert‑Streib F: A review of 
connectivity map, and computational approaches in pharma-
cogenomics. Brief Bioinform 19: 506‑523, 2018.

40.	Gaspar T, Kis B, Snipes JA, Lenzsér G, Mayanagi K, Bari F and 
Busija DW: Neuronal preconditioning with the antianginal drug, 
bepridil. J Neurochem 102: 595‑608, 2007.

41.	 van Kalken CK, van der Hoeven  JJ, de  Jong  J, Giaccone G, 
Schuurhuis GJ, Maessen PA, Blokhuis WM, van der Vijgh WJ 
and Pinedo HM: Bepridil in combination with anthracyclines 
to reverse anthracycline resistance in cancer patients. Eur 
J Cancer 27: 739‑744, 1991.

42.	Lee YS, Sayeed MM and Wurster RD: Intracellular Ca2+ medi-
ates the cytotoxicity induced by Bepridil, and benzamil in human 
brain tumor cells. Cancer Lett 88: 87‑91, 1995.

43.	 Baldoni S, Del Papa B, Dorillo E, Aureli P, De Falco F, Rompietti C, 
Sorcini D, Varasano E, Cecchini D, Zei T, et al: Bepridil exhibits 
anti‑leukemic activity associated with NOTCH1 pathway inhibi-
tion in chronic lymphocytic leukemia. Int J Cancer 143: 958‑970, 
2018.

44.	Li  C, Zeng  X, Liu  Z, Li  F, Wang  K and Wu  B: BDNF 
VAL66MET polymorphism elevates the risk of bladder cancer 
via MiRNA‑146b in Micro‑Vehicles. Cell Physiol Biochem 45: 
366‑377, 2018.

45.	 Gong XH, Chen C, Hou P, Zhu SC, Wu CQ, Song CL, Ni W, 
Hu JF, Yao DK, Kang JH, et al: Overexpression of miR‑126 
inhibits the activation, and migration of HSCs through targeting 
CRK. Cell Physiol Biochem 33: 97‑106, 2014.



ONCOLOGY REPORTS  41:  2241-2253,  2019 2253

46.	Watanabe  T, Tsuda  M, Tanaka  S, Ohba  Y, Kawaguchi  H, 
Majima T, Sawa H and Minami A: Adaptor protein Crk induces 
Src‑dependent activation of p38 MAPK in regulation of synovial 
sarcoma cell proliferation. Mol Cancer Res 7: 1582‑1592, 2009.

47.	 Matsumoto R, Tsuda M, Wang L, Maishi N, Abe T, Kimura T, 
Tanino M, Nishihara H, Hida K, Ohba Y, et al: Adaptor protein 
CRK induces epithelial‑mesenchymal transition, and metastasis 
of bladder cancer cells through HGF/c‑Met feedback loop. 
Cancer Sci 106: 709‑717, 2015.

48.	Kumar S, Lu B, Davra V, Hornbeck P, Machida K and Birge RB: 
Crk tyrosine phosphorylation regulates PDGF‑BB‑inducible Src 
activation, and breast tumorigenicity, and metastasis. Mol Cancer 
Res 16: 173‑183, 2018.

49.	 Xu M, Chen S, Yang W, Cheng X, Ye Y, Mao J, Wu X, Huang L 
and Ji J: FGFR4 links glucose metabolism, and chemotherapy 
resistance in breast cancer. Cell Physiol Biochem 47: 151‑160, 
2018.

50.	Katoh M and Nakagama H: FGF receptors: Cancer biology, and 
therapeutics. Med Res Rev 34: 280‑300, 2014.

51.	 Schelch  K, Kirschner  MB, Williams  M, Cheng  YY, 
van Zandwijk N, Grusch M and Reid G: A link between the fibro-
blast growth factor axis, and the miR‑16 family reveals potential 
new treatment combinations in mesothelioma. Mol Oncol 12: 
58‑73, 2018.

52.	Lin Q, Lim HS, Lin HL, Tan HT, Lim TK, Cheong WK, Cheah PY, 
Tang CL, Chow PK and Chung MC: Analysis of colorectal cancer 
glyco‑secretome identifies laminin β‑1 (LAMB1) as a potential 
serological biomarker for colorectal cancer. Proteomics  15: 
3905‑3920, 2015.

53.	 Qi L, Sun K, Zhuang Y, Yang J and Chen J: Study on the asso
ciation between PI3K/AKT/mTOR signaling pathway gene 
polymorphism, and susceptibility to gastric cancer. J BUON 22: 
1488‑1493, 2017.

54.	Wu  XJ, Zhao  ZF, Kang  XJ, Wang  HJ, Zhao  J and Pu  XM: 
MicroRNA‑126‑3p suppresses cell proliferation by targeting 
PIK3R2 in Kaposi's sarcoma cells. Oncotarget 7: 36614‑36621, 
2016.

55.	 Kobayashi  Y, Kadoya  T, Amioka  A, Hanaki  H, Sasada  S, 
Masumoto N, Yamamoto H, Arihiro K, Kikuchi A and Okada M: 
Wnt5a‑induced cell migration is associated with the aggressive-
ness of estrogen receptor‑positive breast cancer. Oncotarget 9: 
20979‑20992, 2018.

56.	Wang  L, Yao  M, Fang  M, Zheng  WJ, Dong  ZZ, Pan  LH, 
Zhang HJ and Yao DF: Expression of hepatic Wnt5a, and its 
clinicopathological features in patients with hepatocellular carci-
noma. Hepatobiliary Pancreat Dis Int 17: 227‑232, 2018.

57.	 Ye X, Wang X, Lu R, Zhang J, Chen X and Zhou G: CD47 as a 
potential prognostic marker for oral leukoplakia, and oral squa-
mous cell carcinoma. Oncol Lett 15: 9075‑9080, 2018.

58.	 Makaryan  V, Zeidler  C, Bolyard  AA, Skokowa  J, Rodger  E, 
Kelley ML, Boxer LA, Bonilla MA, Newburger PE, Shimamura A, 
et  al: The diversity of mutations, and clinical outcomes for 
ELANE‑associated neutropenia. Curr Opin Hematol 22: 3‑11, 
2015.

59.	 Vainio P, Gupta S, Ketola K, Mirtti T, Mpindi JP, Kohonen P, 
Fey V, Perälä M, Smit F, Verhaegh G, et al: Arachidonic acid 
pathway members PLA2G7, HPGD, EPHX2, and CYP4F8 iden-
tified as putative novel therapeutic targets in prostate cancer. Am 
J Pathol 178: 525‑536, 2011.

60.	Qi X, Wang Y, Hou J and Huang Y: A Single nucleotide poly-
morphism in HPGD gene is associated with prostate cancer risk. 
J Cancer 8: 4083‑4086, 2017.

61.	 Pereira C, Queiros S, Galaghar A, Sousa H, Pimentel‑Nunes P, 
Brandão C, Moreira‑Dias L, Medeiros R and Dinis‑Ribeiro M: 
Genetic variability in key genes in prostaglandin E2 pathway 
(COX‑2, HPGD, ABCC4, and SLCO2A1), and their involvement 
in colorectal cancer development. PLoS One 9: e92000, 2014.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.

https://www.spandidos-publications.com/10.3892/or.2019.7033

