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Abstract. Head and neck squamous cell carcinoma (HNSCC) 
arises in the oral cavity, salivary glands, larynx, pharynx, nasal 
cavity and paranasal sinuses, and is characterized by high morbidity 
and metastasis rates. Transforming growth factor‑β (TGF‑β) is a 
homodimeric protein known to be a multifunctional regulator in 
target cells and to serve a pivotal role in numerous types of cancer, 
including HNSCC. The role of TGF‑β signaling in carcinogen-
esis can change from tumor‑suppressing to tumor‑promoting. In 
addition, TGF‑β induces epithelial‑mesenchymal transition and 
restrains immune surveillance on malignant cells. In the present 
review, the effects of TGF‑β signaling at a cellular level were 
discussed, which includes the regulation of tumor cells, immune 
cells and other stromal cells, as well as the possible mechanisms 
underlying the conversion from a tumor suppressor to a tumor 
promoter in HNSCC. Further research is required to improve the 
understanding on how this network is involved in carcinogenesis, 
progression and metastases in HNSCC.
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1. Introduction

Transforming growth factor‑β (TGF‑β) signaling is widely 
known to serve an important role in the extracellular micro-
environment and numerous cellular processes, including cell 
proliferation, differentiation, apoptosis and migration  (1). 
Based on a significant amount of evidence in the literature, 
TGF‑β signaling is currently considered to have paradoxical 
impacts on cancer. TGF‑β functions as a tumor suppressor in 
normal epithelial cells or in the early stages of oncogenesis. 
However, as a tumor develops, TGF‑β becomes a potent tumor 
promoter in the epithelium at a later stage and even increases 
the production of TGF‑β, supporting tumor progression and 
metastasis (2,3).

TGF‑β is a regulatory cytokine that is secreted by tumor and 
stromal cells in the tumor microenvironment (TME). Members 
of the TGF‑β superfamily include TGF‑βs, bone morphogenic 
proteins, growth and differentiation factors, activins, inhibins 
and the anti‑Müllerian hormone (4). Inactive TGF‑β cytokines, 
known as latent TGF‑βs, are located in the extracellular matrix. 
Upon activation, the ligand binds to TGF‑β receptor type II 
(TβRII), which is constitutively activated, and then interacts 
with TβRI (also termed activin receptor‑like kinase), resulting 
in the formation of hetero‑tetrameric complex and phosphory-
lation of TβRI  (5,6). The co‑receptors (known as TβRIII) 
may modulate the access of ligands to TβRI and TβRII, 
rather than being directly involved in the pathway (7). The 
hetero‑tetrameric complex of active receptors initiates down-
stream signaling through canonical or non‑canonical TGF‑β 
signaling. In the canonical signaling, active TβRI recruits and 
phosphorylates receptor‑regulated Smad (R‑Smad) proteins, 
including Smad1‑3, Smad5 and Smad8. Activated R‑Smads 
associate with common‑mediator Smad proteins (Smad4 
in mammals) to form hetero‑trimers, which subsequently 
translocate to the nucleus, bind to Smad‑binding elements and 
regulate TGF‑β‑responsive genes in collaboration with cofac-
tors, such as zinc‑finger and forkhead (8‑10). The inhibitory 
Smad proteins (including Smad6 and Smad7) compete with 
R‑Smads for binding to the receptors and recruit ubiquitin 
ligases to degrade TβRI and R‑Smads, thus modulating the 
intensity and duration of Smad‑dependent signaling (11,12). 
In the non‑canonical TGF‑β signaling pathway, phosphory-
lated hetero‑tetrameric receptors activate phosphoinositide 
3‑kinase/protein kinase B (PI3K/Akt), Ras homolog gene 
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family member A and mitogen‑activated protein kinase 
(MAPK) among others (13,14). 

Dysregulated TGF‑β signaling is common in several 
types of cancer, including head and neck squamous cell 
carcinoma (HNSCC) (15), and serves a crucial role in tumor 
prevention and progression. HNSCC accounts for ~90% of 
head and neck cancer cases, and common risk factors include 
tobacco exposure, alcohol use, human papillomavirus 
infection and areca nut consumption. A series of therapies 
have been applied in the treatment of HNSCC, including 
surgery, radiotherapy, neoadjuvant chemotherapy and a 
combination of these methods  (16). However, the 5‑year 
survival rate of this disease has not evidently increased in 
last 30 years and remains at ≤50% (17‑21). Accumulating 
evidence suggested that deregulation of TGF‑β signaling 
is of great importance in HNSCC and may be the result of 
defected TGF‑β signaling  (22‑24). Previous studies have 
demonstrated that the expression of Smad4 and Smad2 is 
frequently lost in HNSCC, while increased TGF‑β1 expres-
sion has been reported in the majority of these tumors. 
Mutations of TβRII have been reported to occur in 21% of 
oral squamous cell carcinoma (OSCC) (25‑27). In addition, 
TβRII mRNA exhibited a >50% loss in HNSCC and adja-
cent tissue samples as compared with the levels in normal 
tissue samples (28,29). However, the exact role of TGF‑β 
in HNSCC is not completely understood. The present study 
reviews the current understanding on the TGF‑β signaling 
pathway and its impact on cells in the HNSCC microenvi-
ronment.

2. Dual role of TGF‑β in HNSCC

Tumor suppression. The tumor suppressive effect of TGF‑β 
was supported by several animal models with defected 
TGF‑β signaling. For example, TβRI/phosphatase and tensin 
homolog (PTEN) knockout mice developed full‑penetrance 
HNSCC while mice with PTEN deletion presented with 
hyperproliferation in the head and neck epithelium  (30). 
Similarly, Smad4 deletion in head and neck epithelium also 
exhibited spontaneous HNSCC in mice  (26). In normal 
epithelial cells, TGF‑β may maintain homeostasis through 
the regulation of proliferation and apoptosis. TGF‑β signaling 
arrests the cell cycle in phase G1, and mechanisms under-
lying normal cell growth inhibition include upregulation 
of cyclin‑dependent kinase (CDK) inhibitors and down-
regulation of Myc expression (31). Smad3/Smad4 complexes 
interact with forkhead box O (FoxO) to increase the expres-
sion of CDK inhibitors, namely p15 and p21  (1,3,32). In 
the presence of co‑repressors, Smad3/Smad4 complex also 
interact with regulatory elements of the Myc promoter, a cell 
cycle regulator gene (33,34). As a consequence, the mRNA 
and protein expression of Myc are reduced. Smads induce 
apoptosis in epithelial cells through the activation of P53, 
Bcl‑2‑like protein 11 and death‑associated protein kinase, 
and the repression of Akt. TβRI also induces apoptosis in 
normal epithelial cells through TGF‑β‑activated kinase 1 
(TAK1)‑p38/c‑Jun N‑terminal kinase, independent of Smads 
(Fig. 1) (1,35‑40). However, there is no direct evidence to 
support that the same molecular mechanisms are involved 
in HNSCC. Inhibitor of DNA‑binding/differentiation (ID) 

proteins are known to negatively regulate cell differentia-
tion by interfering with basic helix‑loop‑helix transcription 
factors. It has been reported that in keratinocytes TGF‑β 
upregulated the expression of cyclic AMP‑dependent tran-
scription factor‑3, which served as a cofactor assisting the 
binding of Smad3/Smad4 complexes to the ID1 promoter; 
consequently, ID1 expression was downregulated and cell 
differentiation was promoted in vitro (41,42).

Tumor promotion. Although TGF‑β signaling is widely known 
to mediate cell cycle arrest and enhance apoptosis in normal 
epithelium or in the early stage of tumor formation, it also 
induces epithelial cell overproliferation and inhibits apoptosis 
at a later stage of oncogenesis. For instance, Lu et al  (27) 
demonstrated that tumor cells and epithelial cells from 
adjacent tissues expressed increased levels of TGF‑β1, as 
compared with those in epithelial cells from normal control 
human tissues. However, in transgenic mice, overexpression 
of TGF‑β1 was reported to result in the hyperproliferation of 
cells at the head and neck epithelium, and to enhance inflam-
mation and angiogenesis (27). This suggested that TGF‑β1 
promoted cell proliferation by the formation of an extracel-
lular microenvironment in favor of tumor formation, even at 
early stage of carcinogenesis (Fig. 1) (27). Although, TGF‑β1 
functions as a potent chemotactic molecule for leukocytes, it 
has been reported that inflammatory cytokines and growth 
factors secreted by infiltrated leukocytes may counteract the 
negative effects of TGF‑β1 on the cell cycle (27). In fact, loss 
of TβRI or TβRII partly subverts TGF‑β1‑induced cell cycle 
arrest, and this effect along with the increased production of 
TGF‑β1 may result in its accumulation in the extracellular 
microenvironment. The loss of TβRI or TβRII has also been 
proven to lead to increased cell proliferation and inhibit the 
apoptosis of HNSCC cells, respectively (29,30). Additionally, 
a previous study identified that improved proliferation and 
inhibited apoptosis due to decreased TβRI levels were alterna-
tively associated with the activation of the PI3K/Akt signaling 
pathway (43).

TGF‑β signaling disruptions are associated with poor 
prognosis partly due to the induction of epithelial‑mesen-
chymal transition (EMT). EMT is a cellular process during 
which a cell with epithelial characteristics, such as cell 
polarity and cell‑cell conjunction, translates to a cell with 
mesenchymal characteristics, such as motility (44). Decreased 
E‑cadherin and increased vimentin levels are hallmarks of 
the EMT, while Snail and Twist are important factors nega-
tively regulating E‑cadherin (45). In OSCC, TGF‑β signaling 
has been implicated in EMT through Snail and upregula-
tion of matrix metalloprotease 9 (MMP‑9) levels  (46,47). 
Yu et al (48) demonstrated that TGF‑β1 expression in HNSCC 
was correlated with decreased E‑cadherin level through 
the phosphorylation of Smad2/3 and subsequent involve-
ment of Smad4, which bound to the Snail promoter  (49). 
Independently of Smads, TGF‑β1 also regulates the Snail 
family proteins via the extracellular signal‑regulated kinase 
(ERK)1/2 pathway in HNSCC  (45). In addition, MMP‑9 
degrades the extracellular matrix components and basement 
membrane, and is regulated by TGF‑β1 through Smad2/3 
and myosin light chain kinase in human HNSCC cell lines 
(Fig. 1) (50). Notably, Sun et al (46) demonstrated a reciprocal 
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interaction between MMP‑9 and Snail regulation. MMP‑9 
induced EMT partly through the expression of Snail, while 
Snail was involved in TGF‑β1‑modulated MMP‑9 expres-
sion by increasing Ets‑1 (46). Another study indicated that 
TGF‑β1 promoted MMP‑9 expression by Slug (Snail2) (51). 
Furthermore, TGF‑β1 may enhance EMT in cooperation with 
other growth factors in HNSCC. Compared with TGF‑β1 or 
epithelial growth factor (EGF) alone, long‑term co‑stimula-
tion with TGF‑β1 and EGF in an OSCC cell culture model 
induced a phenotype transition, displaying upregulation of 
vimentin and downregulation of E‑cadherin at the protein 
level, as well as markedly enhanced invasiveness (52). It was 
also reported that these observations may be associated with 
TGF‑β1/EGF causing extracellular matrix remodeling by a 
plasmin/MMP‑10/MMP‑1‑dependent collagen remodeling  
axis (52).

3. Potential mechanisms underlying the conversion of 
TGF‑β from tumor suppressor to tumor promoter

The TGF‑β signaling pathway serves as a tumor suppressor at 
an early stage, whereas it serves as a tumor promoter in trans-
formed epithelial cells at a later stage (31). Accordingly, the 
potential mechanisms underlying this conversion of the role 
of TGF‑β have been widely discussed due to their important 
effect on the balance of normal and transformed cells, and 
these mechanisms may serve as therapeutic targets in malig-
nancies of an epithelial origin. Among the numerous possible 
mechanisms, investigation of mutations in the Smad‑dependent 
pathway and disruption of the balance between this and other 
pathways may be of great importance.

In keratinocytes, the defected Smad4 pathway or alterna-
tive activated pathways (such as Erk) may abrogate growth 

Figure 1. TGF‑β signaling maintains homeostasis between the proliferation and apoptosis of normal epithelial cells by Smads or other Smad‑independent 
downstream pathways. Increased levels of TGF‑β contribute to angiogenesis, thus shaping a tumor microenvironment that allows uncontrolled epithelial 
proliferation. Increased DAB2 and activated Ras/MAPK signaling pathway, as well as defective TGF‑β signaling, which includes changes in Smad4, TβRI and 
TβRII, are in favor of uncontrolled proliferation of transformed cells. In addition, TGF‑β induces increased MMP‑9 and decreased E‑cadherin levels, which 
are hallmarks of EMT. Furthermore, tumor and stromal cells produce increased TGF‑β levels, forming a vicious cycle. TGF‑β, transforming growth factor‑β; 
DAB2, disabled homolog 2; MAPK, mitogen‑activated protein kinase; TβR, TGF‑β receptor; MMP‑9, matrix metalloprotease 9; EMT, epithelial‑mesenchymal 
transition; ERK, extracellular signal‑regulated kinase; TAK1‑p38/JNK, TGF‑β‑activated kinase 1‑p38/c‑Jun N‑terminal kinase; SBE, Smad‑binding element.
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inhibition and enable the pro‑oncogenic effects of TGF‑β. 
Defective Smads‑dependent pathways overturn the effect of 
TGF‑β that induces cell cycle arrest and apoptosis and at the 
same time reciprocally interact with alternative pathways 
facilitating cancer invasion (53). Smad4 is a gatekeeper gene in 
HNSCC that directly controls cell proliferation, and decreased 
Smad4 expression has been verified to be correlated with 
irresponsiveness to TGF‑β‑induced growth inhibition (53). In 
addition, oncogenic Ras downregulates Smad4 by promoting 
the process of degradation  (54); in return, low levels of 
Smad4 activate Ras‑dependent ERK signaling, which is then 
involved in the progression to undifferentiated carcinoma in 
keratinocytes (55).

Disabled homolog 2 (DAB2), a putative tumor suppressor 
gene, suppresses Smad2 phosphorylation and activation. 
Hannigan  et  al  (56) reported that, in SCC cell lines, the 
epigenetically downregulated DAB2 has been verified to 
negatively regulate Smad2 and its downstream pathway. By 
contrast, upon enhanced expression of DAB2, the cell lines 
presented growth prohibitive responses to TGF‑β again (56). 
Therefore, downregulated DAB2 contributes to converting 
TGF‑β into a tumor promoter, facilitating cell proliferation 
and anchorage‑independent growth (Fig. 1).

Other mechanisms have also been suggested to be involved 
in this role conversion. For instance, TβRII is reportedly 
significantly decreased in primary HNSCC (57), resulting in 
TGF‑β1 accumulation in the TME. In place of suppressing 
overproliferation in epithelial cells, excessive TGF‑β1 levels 
may directly affect the tumor stroma, inducing effects such 
as promotion of angiogenesis, myofibroblast formation and 
exertion of a chemotactic effect on neutrophils and macro-
phages (29). Notably, TβRII mutation in the epithelium is also a 
classic mechanism that subverts growth arrest and contributes 
to a tumor‑friendly microenvironment by increasing inflam-
mation and angiogenesis (Fig. 1). Additionally, the suppressive 
effect of Smad7 on the canonical TGF‑β signaling pathway is 
greater than that on non‑canonical pathways involving TAK1 
signaling, such as TAK1‑NF‑κB signaling, which favors malig-
nant progression. Freudlsperger et al (58) demonstrated that, in 
HNSCC cell lines, the relatively preferential suppression by 
Smad7 on Smad‑dependent growth inhibition may favor the 
conversion. The development of cancer cell tolerance to the 
TGF‑β‑mediated growth inhibition is currently an important 
focus of carcinogenesis, progression and treatment research; 
however, the intricate conversion mechanism remains unclear 
to date.

4. Impact of TGF‑β on immune cells in HNSCC

Immune surveillance. The concept of tumor immune surveil-
lance was initially described in 1967 by Burnet (59). This refers 
to an organism discerning and eliminating cancer cells via the 
innate and adaptive immune system. At the same time, cancer 
cells are able to evade discernment and attack from the immune 
system, thus promoting tumor progression. Over the last 50 years, 
TGF‑β has been demonstrated to abrogate tumor‑suppressing 
immune cell functions and to support tumor‑promoting func-
tions in certain types of cancer (23,24,60). This section outlines 
how TGF‑β signaling promotes tumor progression in HNSCC 
by affecting several types of immune cells.

Innate immune system. Dendritic cells (DCs), first identified by 
Steinman in 1973 (61), are the most efficient antigen‑presenting 
cells  (61,62). Researchers have identified DC inactivation 
in HNSCC bearing hosts (63). Exogenous TGF‑β has been 
demonstrated to hamper DC maturation by compromising 
the expression levels of major histocompatibility complex 
class II and costimulatory molecules (64). In addition, TGF‑β 
immobilizes DCs in order to prevent the migration of DCs 
and tumor antigens to lymph nodes (17,65). Upon exposure to 
TGF‑β, DCs facilitate immune tolerance and the differentia-
tion of CD4+ T cells to T regulatory cells (Tregs) in the TME 
of HNSCC (66). These results suggested that TGF‑β induced 
DC dysfunction via regulating the maturation and mobility of 
DCs in peripheral organs.

Previous studies have indicated that tumor‑associated 
macrophages are mainly of the M2 phenotype and are posi-
tively correlated with the histopathological grades of HNSCC 
bearing hosts (67‑69). Exposure to enhanced expression of 
TGF‑β results in an M2 macrophage phenotype, which typi-
cally expressed CD206 (70). Mechanisms of TGF‑β inducing 
M2 include the negative regulation of Toll‑like receptor (TLR) 
signaling that causes induction of anti‑tumor cytokines, 
such as tumor necrosis factor (TNF)‑α, interleukin (IL)‑12 
and interferon (IFN)‑γ, in order to participate in macro-
phage responses (71,72). Furthermore, Standiford et al (73) 
demonstrated that activated TGF‑β signaling is required in 
IL receptor‑associated kinase induction, which is a critically 
negative regulator of TLR signaling. Besides participating in 
macrophages polarization, TGF‑β recruits macrophages to the 
TME, where they further produce TGF‑β and thus a vicious 
cycle is formed (60).

Natural killer (NK) cells are frequently incompetent in 
HNSCC (74,75), and have been demonstrated to be suppressed 
by TGF‑β, partly due to the stable expression of TβRII on NK 
cells (31,76). TGF‑β binds to TβRII and then activates down-
stream components, resulting in the transcriptional repression 
of NK group 2 member D (NKG2D) tumor cell recognition 
receptors, in turn suppressing the cytotoxic effects of NK 
cells (76,77). Similarly, Klöss et al (78) reported that enhanced 
TGF‑β1 plasma levels were correlated with a decreased 
NKG2D‑dependent cytotoxic ability in relapsed HNSCC 
patients. Furthermore, Ghiringhelli et al (79) indicated that 
membrane‑bound TGF‑β expressed on Tregs negatively regu-
lated NKG2D and the type I transmembrane protein NKp30 
on NK cells, thus suppressing NK cell functions through 
Treg‑NK cell interaction.

Myeloid‑derived suppressor cells (MDSCs), first detected 
in cancer patients in 1984 (80), consist of a heterogeneous 
population of immature myeloid cells, including the precur-
sors of DCs and macrophages. One of the most notable 
characteristics of MDSCs is that they suppress the activity of 
T cells (81,82). Previous studies have reported the presence of 
MDSCs in the peripheral blood of HNSCC patients, and that 
high infiltration of MDSCs promoted an immune‑suppressive 
TME (83‑85). Bian et al  (30) demonstrated that decreased 
TGF‑β signaling upregulated C‑X‑C motif chemokine ligand 
(CXCL)1, CXCL5, prostaglandin‑endoperoxide synthase 
2 and CXC receptor 3, contributing to the recruitment of 
MDSCs in an HNSCC model in TβRI/phosphatase and tensin 
homolog (PTEN) 2cKO mice. However, further research is 
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required to support whether the recruitment of MDSCs in an 
HNSCC model is associated with a TGF‑β signaling defect 
alone, or simultaneous TGF‑β signaling defect and PTEN loss.

Adaptive immune system. T lymphocytes can be classified into 
four subtypes, including cytotoxic T, helper T (Th), regulatory 
T (Treg) and memory T (Tm) cells. With the exception of Tm 
cells, all these subtypes have been verified to serve an important 
role in tumor escape from immune surveillance (86). Similarly 
to epithelial cells, TGF‑β induces primary T lymphocyte 
growth inhibition in G1 phase by downregulating CDK4 (87). 
In addition, the trigger of the conversion of local primary 
T cells to Treg or Th cells in mice is partly associated with the 
transcription factor FoxP3 and retinoic acid receptor‑related 
orphan receptor γt, respectively, whose transcription activity 
can be modulated by TGF‑β (88,89). 

Treg cells, a subtype of CD4+ T lymphocytes, suppress 
tumor immune reaction and contribute to the immune toler-
ance to tumor antigens. Research has verified an enrichment 
of Treg cells in the blood of HNSCC patients (90,91), and these 
cells are recruited and activated by TGF‑β1 (92). Among them, 
the Treg type 1 cells produce TGF‑β1 and IL‑10, rather than 
having direct contact with responder cells to induce inhibi-
tion, and thus favor local immune suppression (92,93). TGF‑β 
skews CD4+ T cells differentiating away from antitumor 
effector Th1 and towards the Th17 phenotype. Li et al (94) 
suggested that the proportion of Th17 cells in the peripheral 
blood increased with cancer progression and metastasis. This 
proportion was higher in the blood of HNSCC patients, with 
evidently enhanced levels observed in patients with advanced 
tumors and/or lymph node metastasis. Furthermore, Th17 cells 
are characterized by the production of IL‑17, whose secretion 
is associated with TGF‑β in HNSCC patients (94,95). IL‑17 
acts to induce tumor cell proliferation and, notably, enhances 
angiogenesis in immune‑deficient hosts, contributing to 
a tumor friendly microenvironment  (2,17). In a study by 
Laad et al  (96), low CD8+ cytotoxic T lymphocytes (CTL) 
frequency was reported in the peripheral blood and tumor 
tissues of oral cancer patients. CTLs are often inactivated, 
while the expression levels of their effector products for 
cytolysis, namely IFN‑γ, granzyme A, granzyme B, perforin 
and Fas ligand, are repressed by TGF‑β (65). Taken together, 
TGF‑β and its downstream signaling are able to interfere with 
CD4+ and CD8+ T cell differentiation and effector functions.

5. Impact of TGF‑β on other cells in the TME

Besides tumor and immune cells, stromal cells are another 
important component of the TME. HNSCC has a relatively low 
survival rate, which may be the consequence of the complex 
symbiotic association among tumor cells, surrounding stromal 
cells (including fibroblasts) and the neoplastic extracellular 
matrix (97). TGF‑β interferes with these cells in a paracrine 
or autocrine manner, leading to increased inflammation and 
angiogenesis, and consequently to tumorigenesis and tumor 
invasiveness, as reported in a study by Lu et al (27). A full 
discussion of how TGF‑β signaling regulates stromal cells in 
the TME is beyond the scope of the present review, and the 
attention of this section will focus on the effects of TGF‑β 
signaling on cancer‑associated fibroblasts (CAFs).

CAFs have been proven to be critical in tumor growth 
and metastasis by Wheeler  et  al  (98) in an orthotopic 
floor‑of‑mouth tumor model. CAFs are characterized by the 
expression of integrin α6, which is closely correlated with 
cell adhesion and worsened patient prognosis in OSCC (99). 
Additionally, these fibroblasts may be involved in the resis-
tance of tumor cells to cetuximab treatment in HNSCC. 
Cytokines, such as TGF‑β1, TNF, CXCL8 and hepatocyte 
growth factor, secreted by CAFs in patients with HNSCC have 
stronger immune‑suppressive effects on T cells in comparison 
with those secreted by normal fibroblasts (100). The CAFs 
secret TGF‑β1 in the TME, and in turn, TGF‑β1 in the TME 
is considered to promote CAF proliferation, as well as the 
secretion of growth factors and proteases that participate 
in cancer invasion (101). Loss of TGF‑β signaling increases 
the expression of CXCL1, CXCL5, CXCL12 and TGF‑β1 in 
fibroblasts, as evidenced by Xu et al (102). Furthermore, in 
OSCC patients, the mRNA and protein levels of TβRII and 
TβRIII are markedly lower in CAFs as compared with those in 
normal fibroblasts (103). Another study revealed that disrupted 
TGF‑β signaling in fibroblasts led to increased stromal cells 
and invasive squamous cell carcinoma of the forestomach in 
mice with conditional inactivation of TβRII (104).

6. Conclusions

HNSCC is the sixth most frequent type of cancer world-
wide  (105), and the high recurrence and metastasis rates 
suggest an urgent need to elaborate the molecular mechanisms 
involved in the processes of carcinogenesis, cancer progression 
and metastasis. TGF‑β is a pleiotropic cytokine that regulates 
the cell cycle progression, differentiation and apoptosis of 
tumor cells, immune cells and other stromal cells in the TME. 
As the mechanisms underlying the involvement of the TGF‑β 
signaling pathway in HNSCC are investigated, the dual role 
of TGF‑β and its conversion between tumor suppressor and 
promoter have received increasing interest. Intact TGF‑β 
signaling has been reported to balance the proliferation and 
apoptosis in the epithelium. While exposed to defective TGF‑β 
signaling, tumor cells acquire resistance to TGF‑β‑induced 
growth inhibition and undergo EMT. Immune cells and CAFs 
react on TGF‑β to form a TME that promotes cancer invasion 
and metastasis, and to help tumor cells escape from immune 
surveillance. Although TGF‑β signaling pathway has been 
widely studied in various types of cancer for several decades, 
the fundamental mechanisms underlying this conversion at 
a cellular level in HNSCC need to be further investigated in 
the future. Additionally, in order to identify novel therapeutic 
targets, further research in the context of HNSCC patients 
and/or cell lines is required to thoroughly explore internal 
mechanisms and external manifestations.
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