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Abstract. Diabetic nephropathy (DN) is a major cause of 
chronic renal failure in diabetic patients worldwide. Betaine, 
a zwitterionic quaternary ammonium salt compound, is 
involved in numerous biological processes. The present study 
aimed to investigate the effects of betaine on mouse mesangial 
cells (MMCs) cultured under high glucose (HG) conditions 
and its underlying mechanisms. MMCs were treated with 
betaine under HG conditions. Cell proliferation and the cell 
cycle distribution were investigated with an MTT assay and 
flow cytometry, respectively. Western blotting and reverse 
transcription‑quantitative polymerase chain reaction analyses 
were applied to respectively determine protein and mRNA 
expression levels. The results suggested that betaine decreased 
cell proliferation in a dose‑dependent manner, while G1‑phase 
arrest was significantly induced in MMCs. Compared with the 
control group, the expression levels of p21 and p27 decreased 
under HG conditions, but were reversed by betaine. Furthermore, 
the expression levels of fibronectin and type IV collagen were 
significantly decreased in cells treated with betaine compared 
with the HG group. Additionally, betaine decreased the 
phosphorylation of Akt, extracellular‑signal‑regulated kinase 
(Erk)1/2 and p38 mitogen‑activated protein kinase (MAPK), 
but was enhanced under HG conditions. Overall, the results 
of the present study indicated that betaine serves a protective 
role in HG‑induced MMCs by inhibiting cell proliferation and 

extracellular matrix deposition via regulating regulation of the 
Akt/Erk1/2/p38 MAPK signaling pathway. 

Introduction 

Diabetic nephropathy (DN), as a diabetic microvascular 
complication, is mainly responsible for chronic renal failure 
in diabetic patients worldwide (1,2). Mesangial cell abnormali-
ties and the deposition of extracellular matrix (ECM) proteins, 
such as fibronectin and collagen, are the main pathological 
hallmarks of DN (3). It has been reported that the prolifera-
tion of mesangial cells serves a vital role in the initiation and 
development of DN (4). Under high glucose (HG) conditions, 
glomerular mesangial cell dysfunction, followed by imbal-
ances in ECM protein secretion and degradation, result in the 
deposition of ECM proteins in the mesangium and basement 
membrane regions, which leads to pathological changes in 
glomerular morphology, structure and function, and the devel-
opment of glomerulosclerosis (5,6). At present, various factors 
have been identified to be important in the development of DN; 
however, the underlying mechanisms remain unclear.

Betaine, a neutral zwitterionic compound, is a naturally 
occurring byproduct of sugar beet refinement, which is 
extracted from molasses. Betaine has been detected in micro-
organisms, animals and plants, including wheat, spinach, 
shellfish and shrimp (7). This compound serves dual roles 
in human physiology, functioning as an osmolyte and as a 
methyl donor in transmethylation. As an osmolyte, in order 
to maintain fluid balance, betaine can protect cells, enzymes 
and proteins from environmental stresses, including high 
salinity and extreme temperatures. As a methyl donor, betaine 
is involved in the methionine cycle in the kidneys and liver 
in humans (8). In addition, betaine participates in a variety 
of biological processes. Betaine was reported to suppress 
prostaglandin synthesis in rat liver macrophages, thus modu-
lating tumor necrosis factor‑α secretion and reversing the 
inhibitory effects of acetaldehyde on the interferon signaling 
pathway  (9,10). Additionally, as a natural food additive, 
betaine can induce an autoimmune response to regulate the 
fat:lean mass ratio and the neuro‑endocrine system  (11). 
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Patients with inflammatory bowel disease exhibit notable 
declines of betaine in urine, which suggests that betaine may 
be involved in the modulation of immune responses  (12). 
Furthermore, it has been shown that betaine decreased serum 
glucose and renal oxidative stress in diabetic rats (13). Thus, 
we speculated that betaine may be an effective agent for the 
treatment of diabetes and its associated complications. The 
present study aimed to investigate the effects of betaine on the 
development of DN, and to determine the underlying potential 
mechanisms.

Materials and methods

Cell culture. Kidneys from mice were removed in a sterile 
manner in accordance with the guidelines set by the National 
Institutes of Health Guide for the Care and Use of Laboratory 
Animals  (14). Briefly, 10  mice aged 5‑6  weeks old and 
weighing 18‑20 g were purchased form the Experimental 
Animal Center of Shanxi Medical University. These mice 
were maintained under standard conditions (temperature 
22˚C, 12‑h light‑dark cycle) and given free access to water 
and a standard diet. The present study was approved by 
Institutional Animal Care and Use Committee of Tianjin 
Third Central Hospital. Mouse mesangial cells (MMCs) 
were extracted from kidneys and cultured as previously 
described (15). MMCs were cultured in RPMI‑1640 medium 
(Gibco; Thermo Fisher Scientific, Inc.) containing HG 
(30 mM D‑glucose) or with normal glucose levels (5.5 mM 
D‑glucose), 10% fetal bovine serum (Gibco; Thermo Fisher 
Scientific, Inc.), and a 1% penicillin and streptomycin solu-
tion (Sigma‑Aldrich; Merck KGaA) for 48 h in a humidified 
incubator with 5% CO2 at 37˚C.

Cell treatment. MMCs were plated at a density of 
5x104 cells/well 24 h prior to treatment. Betaine (1, 5 and 
10 µM) and 100 mM metformin (Squibb Pharmaceutical Co., 
Ltd.) were respectively added to the cells and incubated for 
48 h at 37˚C under HG conditions (30 mM D‑glucose). Cells 
without any treatment were regarded as the normal control 
group, while cells treated with metformin alone were regarded 
as the positive control group.

MTT assay. Cell proliferation was determined by an MTT 
assay. Briefly, cells at a density of 1.0x106 were seeded into 
a 96‑well culture plate. Following various treatment for 48 h 
at 37˚C, cells were incubated in 0.2 mg/ml MTT solution 
(Amresco LLC) for 4 h at 37˚C. Then, dimethyl sulfoxide 
was added to each well to dissolve the formazan crystals and 
the optical density at 490 nm was detected using a Synergy™ 
Multi‑Mode Microplate Reader (Bio‑Tek Instruments, Inc.). 

Cell cycle assay. For cell cycle analysis, cells were harvested 
after treatment for 48 h at a initial density of 6.0x105 cells/well 
in 6‑well plates, washed with PBS, and then fixed with 70% 
ethanol at 4˚C overnight. Subsequently, MMCs were incubated 
with RNase A (50 µg/ml; Sigma‑Aldrich; Merck KGaA) and 
propidium iodide (50 µg/ml; Sigma‑Aldrich; Merck KGaA) 
at 4˚C for 30 min. Finally, the cell cycle was analyzed with 
a flow cytometer (FACSCanto II; BD Biosciences) and 
CellQuest software (BD Biosciences). 

Western blot analysis. For western blot analysis, cells were 
lysed using lysis buffer (Cell Signaling Technology, Inc.). 
Total protein was extracted from cells and its concentration 
was measured with a BCA protein assay kit (Thermo Fisher 
Scientific, Inc.). Samples were subjected to 11% SDS‑PAGE and 
then transferred to polyvinylidene difluoride membranes. The 
membranes were incubated with primary antibodies (1:1,000) 
against fibronectin (ab2413, Abcam), type IV collagen (ab6586, 
Abcam), p21 (cat. no. 2947, Cell Signaling Technology, Inc.), 
p27 (cat. no. 3686, Cell Signaling Technology, Inc.), phos-
phorylated (p)‑Akt (cat. no. 9614, Cell Signaling Technology, 
Inc.), Akt (cat. no. 9272, Cell Signaling Technology, Inc.), 
p‑extracellular‑signal‑regulated kinase (Erk)1/2 (cat. no. 3510, 
Cell Signaling Technology, Inc.), Erk1/2 (cat. no. 4695, Cell 
Signaling Technology, Inc.), p‑p38 mitogen‑activated protein 
kinase (MAPK; cat. no. 4511, Cell Signaling Technology, Inc.), 
p38 MAPK (cat. no. 8690, Cell Signaling Technology Inc.) 
and GAPDH (cat. no. 5174, Cell Signaling Technology, Inc.) 
overnight at 4˚C after blocking with 5% non‑fat milk at room 
temperature for 2 h. Subsequently, the membranes were incu-
bated with corresponding horseradish peroxidase‑conjugated 
secondary antibodies (Santa Cruz Biotechnology) at room 
temperature for 2 h. An enhanced chemiluminescence detec-
tion system (SuperSignal West Dura Extended Duration 
Substrate, Pierce; Thermo Fisher Scientific, Inc.) was used to 
determine protein expression and the Quantity One analysis 
system version 4.6 (Bio‑Rad Laboratories, Inc.) was used for 
the quantification of protein expression.

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR). Total RNA was extracted from MMCs using 
TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's protocols. Complementary 
DNA was synthetized at 37˚C for 15 min and 85˚C for 5 sec 
using a PrimeScript RT Reagent kit (Takara Biotechnology Co., 
Ltd.) and analyzed with a TaqMan Universal PCR Master Mix 
kit (Thermo Fisher Scientific, Inc.) under the thermocycling 
conditions: initial denaturation at 95˚C for 5 min, followed by 
40 cycles of 95˚C for 10 sec and 60˚C for 30 sec. The following 
primer pairs were used for PCR amplification: Fibronectin, 
forward 5'‑GCA​GTG​ACC​ACC​ATT​CCT​G‑3', reverse, 5'‑GGT​
AGC​CAG​TGA​GCT​GAA​CAC‑3'; type IV collagen, forward 
5'‑TCC​TTG​TGA​CCA​GGC​ATA​GT‑3', reverse, 5'‑TTG​AAC​
ATC​TCG​CTC​CTC​TC‑3'; and GAPDH, forward: 5'‑ATC​
CCA​TCA​CCA​TCT​TCC​AG‑3', reverse, 5'‑CCA​TCA​CGC​ACA​
GTT​TCC‑3'. GAPDH was used as an internal control. For 
relative gene expression quantification, the 2‑ΔΔCq method was 
employed (16). 

Statistical analysis. All experiments were repeated three times. 
Data were expressed as the mean ± standard deviation. SPSS 
17.0 statistical software (SPSS, Inc.) was used for all statistical 
analyses. One‑way analysis of variance followed by a Tukey's 
test was used for comparisons between groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Betaine inhibits the proliferative ability of MMCs via G1‑phase 
arrest. The effects of betaine on the growth of MMCs was 
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determined by an MTT assay. Compared with the control 
group, the proliferative ability of MMCs was significantly 
enhanced under HG conditions. Betaine treatment inhibited 
MMC proliferation in a dose‑dependent manner. Metformin 
significantly repressed MMCs proliferation compared with 
HG treatment (Fig. 1). 

As presented in Fig.  2A, compared with the control 
group, HG significantly reduced the proportion of cells in 
G1 phase, while betaine treatment induced G1‑phase arrest 
of MMCs in a dose‑dependent manner. Compared with 
the cells treated with HG, the abundance of G1 phase cells 
significantly increased in MMCs treated with metformin. 
In addition, the protein expression levels of p21 and p27 
were significantly decreased in MMCs treated with HG 
compared with control cells, while betaine treatment 
increased protein p21 and p27 protein expression in MMCs 
in a dose‑dependent manner. Furthermore, a significant 
increase in the expression of the aforementioned proteins 
was reported following treatment with metformin compared 
with the HG conditions (Fig. 2B).

Betaine prevents ECM deposition in MMCs. To investigate the 
effects of betaine on ECM deposition in MMCs, the expres-
sion levels of ECM proteins, including fibronectin and type 
IV collagen, were determined. As presented in Fig. 3, the 
protein and mRNA expression levels of fibronectin and type 
IV collagen were significantly increased in MMCs treated 
with HG compared with the control cells; betaine treatment 
decreased the levels of fibronectin and type IV collagen in 
MMCs in a dose‑dependent manner. Additionally, metformin 
significantly inhibited fibronectin and type IV collagen expres-
sion in MMCs compared with the HG conditions (Fig. 3). 
These results suggested that betaine could prevent ECM depo-
sition induced by HG.

Betaine prevents the activation of Akt, Erk1/2 and p38. To 
explore the underlying mechanism of the effects of betaine 
on MMCs, the Akt and MAPK signaling pathways were 
analyzed. As presented in Fig. 4, the protein expression 
levels of p‑Akt, p‑Erk1/2 and p‑p38 were significantly 
increased in MMCs treated with HG compared with control 
cells. Betaine treatment decreased the levels of p‑Akt, 
p‑Erk1/2 and p‑p38 in MMCs in a dose‑dependent manner. 
On the contrary, metformin significantly inhibited p‑Akt, 
p‑Erk1/2 and p‑p38 protein expression in MMCs compared 
with the HG conditions (Fig. 4). These results indicated 
that betaine might exert its functions through the Akt and 
MAPK signaling pathway.

Discussion

In the present study, betaine inhibited cell proliferation, 
induced G1‑phase arrest and reduced ECM deposition in 
MMCs, possibly via suppression of the Akt/Erk1/2/p38 MAPK 
signaling pathway. The results revealed that betaine may be a 
promising therapeutic agent for the treatment of DN. 

DN is considered as one of the major microvascular 
complication of diabetes; ~50% of diabetes cases exhibit DN, 
which is mainly responsible for end‑stage renal disease (17). 
As DN poses great social and economic burden to indi-
viduals, families and society, it is a major public health 
problem worldwide (18). In China, the proportion of patients 
with end‑stage renal disease caused by DN is increasing 
every year (19); however, the pathogenesis of DN is mark-
edly complicated and its mechanism has not yet been fully 
elucidated. As the pathogenesis of DN involves in various 
bioactive compounds and several signaling pathways, effec-
tive preventative and treatment measures are required. Thus, 
exploring the pathogenesis of DN and identifying potential 
treatment methods to delay the progression of DN have 
important social and economic value.

Betaine, a methyl donor, has been repor ted to 
possess various physiological and pharmacological func-
tions  (20,21). Betaine hydrochloride can be used for the 
prevention and therapy of atherosclerosis, liver disease 
gastric acid deficiency and rheumatism  (22‑27). Betaine 
possesses notable medicinal value and has broad applica-
tions; however, few studies have investigated the effects 
of betaine on DN. Thus, the current study aimed to inves-
tigate the effects and possible mechanism of betaine on 
HG‑induced MMCs. Mesangial cell abnormalities and 
ECM deposition are pathological hallmarks of DN  (6). 
Various studies have demonstrated that mesangial cell 
proliferation is crucial in the occurrence and evolvement 
of DN (6,28). Our findings demonstrated that betaine and 
metformin inhibited cell proliferation, induced G1‑phase 
arrest and prevented ECM deposition in MMCs.

In addition, the Akt, Erk1/2 and p38 MAPK signaling 
pathways were determined to be involved in the mecha-
nism underlying the effects of betaine on MMCs. Akt, is a 
serine/threonine protein kinase reported to be anti‑apoptotic 
and one of the main downstream targets of the phosphati-
dylinositol (3,4,5)‑trisphosphate signaling pathway  (29). 
Inactivation of Akt, a key regulator of cell viability, is 
involved in degenerative diseases and stress‑induced 

Figure 1. Betaine suppresses the proliferative ability of MMCs. Following 
treatment, the proliferative ability of MMCs was detected via an MTT assay. 
Data were expressed as the mean ± standard deviation. *P<0.05, **P<0.01 vs. 
NC; #P<0.05, ##P<0.01 vs. High glucose. MMCs, mouse mesangial cells; NC, 
negative control; OD, optical density.
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pathological cell death (30,31). It has been reported that the 
Akt signaling pathway is associated with DN (29); an Akt 
inhibitor was able to attenuate HG‑induced cell proliferation, 
inflammation and ECM expression in mesangial cells (32). 
Compounds such as daphnetin and zeaxanthin, could 
ameliorate HG‑induced mesangial cell apoptosis via the Akt 
signaling pathway (32,33). Our results indicated that betaine 
inhibited MMC proliferation and ECM deposition via the 
Akt signaling pathway, which is in consistent with previous 
studies. The Erk1/2 signaling pathway is also involved in 
DN (34). Erk has been implicated in cell proliferation and 
differentiation, as it can induce the expression of certain 
genes (35). As mesangial cell proliferation is facilitated by the 
activation of Erk1/2, its inhibition protected mesangial cells 
under HG conditions by suppressing cell proliferation and 
ECM deposition (36,37). In addition, p38 MAPK, which is 
associated with cell apoptosis initiation and cell cycle arrest, 

has been demonstrated to be activated in glomerular mesan-
gial cells under HG conditions (38,39). In the present study, 
it was demonstrated that Akt, Erk1/2 and p38 MAPK were 
activated in MMCs under HG conditions, and betaine was 
proposed to exert its protective effects via the Akt/Erk/p38 
MAPK signaling pathway.

However, there are certain limitations to the present study. 
There are three isoforms of Akt in mammalian cells, namely 
Akt1, Akt2 and Akt3. Though it has been reported that 
Akt2 was strongly associated with the regulation of glucose 
homoeostasis and is the predominant Akt isoform expressed 
in insulin‑responsive tissues (40), the specific binding sites 
for betaine on Akt were not determined. Additionally, the 
specific targets activated downstream of the Akt/Erk1/2/p38 
MAPK signaling pathway should be investigated in subse-
quent studies. Furthermore, HG in culture cannot completely 
mimic diabetic conditions in vivo; experiments using diabetic 

Figure 2. Betaine induces G1 phase arrest of MMCs. (A) Following treatment, the cell cycle distribution of MMCs was detected using flow cytometry and the 
proportion of cells in G1 phase was quantified. (B) Protein expression levels of p21 and p27 in different groups. Data were expressed as the mean ± standard 
deviation. *P<0.05, **P<0.01 vs. NC; #P<0.05, ##P<0.01 vs. High glucose. MMCs, mouse mesangial cells; NC, negative control.
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mouse models should be performed to validate these prelimi-
nary data. The present study reported the protective effects 
of betaine in vitro; the effects of betaine treatment in vivo 
should be determined in the future.

Collectively, the findings of the current study indicated that 
betaine exerted a protective effect on MMCs under HG condi-
tions by inhibiting MMC proliferation and ECM deposition via 
regulation of the Akt/Erk1/2/p38 MAPK signaling pathway.

Figure 3. Betaine inhibits fibronectin and type IV collagen expression in mouse mesangial cells. Following treatment, the (A) protein and (B) mRNA expression 
levels of fibronectin and type IV collagen were detected using western blotting and reverse transcription‑quantitative polymerase chain reaction, respectively. 
*P<0.05, **P<0.01 vs. NC; #P<0.05, ##P<0.01 vs. High glucose. NC, negative control.

Figure 4. Effects of betaine on the activation of Akt, Erk1/2 and p38 in mouse mesangial cells. Following treatment, the protein expression levels of Akt, 
Erk1/2, p38 MAPK, p‑AKT, p‑Erk1/2 and p‑p38 MAPK was measured via western blotting. *P<0.05, **P<0.01 vs. NC; #P<0.05, ##P<0.01 vs. High glucose. 
AKT, protein kinase B; Erk, extracellular‑signal‑regulated kinase; MAPK, mitogen‑activated protein kinase; NC, negative control; p, phosphorylated.
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