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Abstract. Natural asbestiform fibers are defined ‘naturally 
occurring asbestos’ (NOA) and refer to the mineral as a 
natural component of soils or rocks. The release of NOA fibers 
into the air from rocks or soils by routine human activities 
or natural weathering processes represents a risk for human 
beings. Fluoro-edenite (FE) is a NOA fiber detected in the 
benmoreitic lava in the area of Biancavilla, South-west slope 
of Mt. Etna. The aim of the present study was to investigate 
FE immunotoxicity pathways in a group of 38 occupationally 
exposed construction workers, in order to find any biological 
markers of its effect. Subjects underwent respiratory function 
tests and HRCT total chest scanning. Serum IL-1β, IL-6, IL-8 
and TNF-α were measured. The presence of PPs was signifi-
cantly greater in subjects exposed than in the control (25 vs. 2). 
In subjects exposed to FE, IL-1β and TNF-α values were 
significantly higher than the controls. The previously observed 
increase of IL-1β and IL-18 showed a probable involvement of 
the proteic complex defined inflammosome by FE fibers.

Introduction

Occupational and/or environmental exposure to some types 
of asbestos fibers is related with both malignant and non-
malignant pulmonary diseases  (1-3), of which malignant 
mesothelioma (MM) and lung cancer are the most typical 
ones  (4). Instead, non-malignant asbestos-related diseases 

include pleural plaques (PPs), pleural effusions, diffuse pleural 
thickening and parenchymal fibrosis (5-8).

Natural asbestiform fibers are defined ‘naturally occurring 
asbestos’ (NOA) (9-11). The word refers to fibers which are 
natural components of soils or rocks. The release of NOA fibers 
into the air by human work activities or natural weathering 
processes is a potential risk for the general population (9). 
These fibers have been detected in various parts worldwide, 
such as Greece, Turkey, Cyprus, Corsica, New Caledonia, 
Afghanistan, Russia, Montana (USA) and Italy (12-17).

In the 1990s, a greatly increased standardized rate of 
mortality from MM was observed after epidemiological 
studies in the municipality of Biancavilla (Sicily, Italy) (17,18). 
Later studies spotted an asbestiform mineral fibre, called 
fluoro-edenite (FE), in the lava rocks excavated from a local 
stone quarry. The derived material had been used locally for 
about 50 years for building (17-19). The quarry was shut down 
in 1998 (20). Following some in vitro, in vivo and epidemio-
logical studies (21-25) the IARC (Lyon, France) classified FE 
as carcinogenic to humans, but only for MM (26).

The relationship between exposure to asbestos and adverse 
health effects has been extensively studied  (27). These 
asbestos-related diseases are well documented and approxi-
mately 107,000 mortalities are attributable to exposure to 
fiber worldwide, annually (28-30). Little has been established 
with regard to FE-related diseases (31-38); however, epidemio-
logical studies have shown that these fibers may cause chronic 
obstructive lung disease (18,39), PPs and MMs (17,39).

These pathologies are the result of imbalanced inflam-
matory processes that is the early response to inhaled fibers. 
Historically, immune system cells have been regarded as the 
main players in initiating acute or chronic inflammation. 
However, recent studies have shown that epithelial cells of the 
respiratory tract and mesothelial cells lining the body cavities 
are capable of initiating inflammatory events after exposure 
to pathogenic fibers in the absence of cells of the immune 
system (40). The aim of this study was to detect FE immu-
notoxicity pathways in a group of occupationally exposed 
construction workers (CW), to find any biological markers of 
its effect.
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Materials and methods

Ethics statement. The research protocol received the approval 
of the Ethics Committee of Catania University Hospital 
(Catania, Italy) and the written informed consent of all subjects 
was acquired including them in the study.

Study population. Thirty-eight construction workers residing 
and working in the area of Biancavilla (Sicily, Italy) were 
invited to participate in this study. In the same period, 
38  construction workers living and working least 40 km 
away the area of Biancavilla were recruited as control 
group. Exclusion criteria were thoracic diseases (e.g. asthma, 
bronchopneumonia, and tuberculosis), previous exposure 
to asbestos and involvement in construction work in the 
Biancavilla area for <1  year (the latter only for exposed 
subjects). A questionnaire was used to obtain information 
on medical and occupational history, use of medications, 
smoking and drinking habits. A free medical check, including 
spirometry and a high-resolution computer tomography 
(HRCT) chest scan, was given to all workers.

Clinical investigations. Respiratory function tests were 
carried out using a bell spirometer (Biomedin, Padova, Italy). 
Equipment, calibration and maneuvers were in conformity 
with the American Thoracic Society (ATS) guidelines. Forced 
vital capacity, forced expiratory volume in 1 sec, peak expi-
ratory flow, maximal expiratory flow rate at 25-75% of the 
vital capacity, total lung capacity and TLCO were assessed 
and expressed as a proportion of the European Coal and Steel 
Community reference values, adjusted to individual character-
istics (age, weight and height) checked at the time of testing.

Subjects underwent HRCT total chest scanning using an 
Optima CT 580W (GE Healthcare, Fairfield, CT, USA) without 
contrast medium. Interstitial and/or pleural abnormalities were 
recorded. Pleural plaques (PPs) are circumscribed quadran-
gular elevations with sharp borders and density comparable 
to tissue, with/without signs of calcification and expressed in 
terms of frequency and percentage. Parenchymal abnormali-
ties (PA) (subpleural dependent opacity, subpleural curvilinear 
opacities, subpleaural perpendicular lines, parenchymal 
nodules, honeycombing and ground glass opacities) were 
expressed in terms of frequency and percentage.

Laboratory tests. Venous blood (10  ml) was collected in 
the morning, following overnight fasting, to determine red 
blood cell count, haematocrit, haemoglobin levels, white 
blood cell count, erythrocyte sedimentation rate, C-reactive 
protein levels and liver enzyme (aspartate aminotransferase 
and alanine aminotransferase) levels. For cytokine detection, 
blood samples were drawn into vacuum tubes with gel and clot 
activator (Vacuette, Greiner Bio-One, Kremsmünster, Austria) 
before analysis. After collection, the tubes were left in an 
upright position for at least 30 min at room temperature but no 
more than 60 min. Samples were then centrifuged at 3500 rpm 
for 10 min, then serum was separated and stored at -20°C 
until analysis. Serum interleukin-1β (IL-1β), IL-6, IL-8 and 
tumor necrosis factors-α (TNF-α) were measured using highly 
sensitive quantitative sandwich assays (Quantikine ELISA kit, 
R&D Systems, Minneapolis, MN, USA). The instruments were 

adjusted and internal quality control was performed using the 
same lot of the manufacturer's control and calibration material 
throughout the study.

Statistical analysis. Data were summarized as mean ± SD 
for continuous variables and frequencies for categorical 
variables. Normality was checked by Kolmogrov-Smirnov 
test and homogeneity of variance by Levene's test. T-test 
was used for analyzed continuous variance, Fischer's test for 
categorical variables. Statistical analyses were performed by 
SPSS ver. 22 (IBM, Armonk, NY, USA) and GraphPad Prism 
ver. 6.0 (GraphPad Software, Inc., La Jolla, CA, USA).

Results

Application of the exclusion criteria did not cause any subject 
to be excluded from the sample. The main sample characteris-
tics are reported in Table I. All 38 FE exposed CWs had been 
living in Biancavilla for >35 years, and 74% (n=28) were born 
there. Besides, all had been working almost exclusively in and 
around Biancavilla. As to their occupational history, 21 (55%) 
of the participants revealed they had personally handled and 
worked with gravel excavated from Mount Calvario quarry 
until 1998. Furthermore, all had been involved in restoring 
houses dating back to the 1950s, when the lava from the quarry 
had been widely used as a building material.

Age, body mass index, smoking habits, alcohol consumption 
and working age did not differ between exposed and control. 
Blood examination tests were within the normal range in all 
subjects. Functional respiratory tests were within the normal 
range for all participants. A restrictive ventilatory defect was 
detected in two subjects (5%) and an obstructive ventilatory 
defect observed in one (3%) of the exposed group. Control 
subjects were all in the normal range. TLCO was less in two 
additional participants of exposed group (data not shown).

The HRCT findings are reported in Table I. HRCT scans 
revealed low-grade fibrosis in 3 workers (one unilateral and 

Table I. Main features of samples and main results.

	 Exposed	 Non-exposed
Features	 workers	 workers	 P-value

Gender (male)	 38 (100%)	 38 (100%)	 NS
Age (years)	 53.8±7.9	 54.4±6.5	 NS
BMI (kg/m2)	 23.1±1.8	 22.7±1.7	 NS
Smokers	 17 (45%)	 19 (50%)	 NS
Alcohol	 16.4±3.5	 17.1±2.9	 NS
consumption (g/day)
Working age (years)	 21.2±9.3	 22.1±10.1	 NS
Presence of PPs	 25 (66%)	 2 (5%)	 <0.0001
Presence of PAs	 3 (8%)	 0 (0%)	 <0.0001
IL-1β (pg/ml)	 27.51±8.43	 15.28±5.64	 <0.0001
IL-6 (pg/ml)	 13.07±3.25	 12.12±20.15	 NS
IL-8 (pg/ml)	 18.43±9.27	 17.25±8.76	 NS
TNFα (pg/ml)	 21.14±6.13	 9.79±3.81	 <0.0001

BMI, body mass index; NS, not significant.
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two bilateral). In the exposed group, pleural involvement 
was documented in 25 (66%) subjects, of whom 21 (84%) 
had bilateral plaques. Calcifications were detected in 5 (17%) 
participants. In control subjects PPs were detected in 5% of 
cases (n=2) (Table I).

Cytokine mean levels are reported in Fig. 1. In FE exposed 
subjects, TNF-α or IL-1β values were significantly higher 
(P<0.0001) than the controls, whereas IL-6 and IL-8 values 
were higher, although not significantly (P>0.05).

Discussion

A number of observations show that altered immune responses 
are also important in asbestos respiratory toxicity (41). Some 
of the major cytokines and growth factors involved in the 
pathogenesis of lung diseases include IL-1, TNF-α, trans-
forming growth factor-β (TGF-β), platelet derived growth 
factor (PDGF) and IL-8. These agents augment cellular injury 
and trigger fibroblast proliferation and collagen deposition. 
Although alveolar macrophages (AM) are thought to be the 
primary source of these proteins, a previous molecular study 
suggests that pulmonary epithelial cells are also involved (42).
Further evidence suggests that TNF-α is a key cytokine 
involved in asbestos induced lung toxicity  (43,44). TNF-α 
can increase the levels of alveolar type II cell Macrophage 
Inflammatory Proteins-1α (MIP-1α) mRNA, which suggests 
that TNF-α can promote pulmonary inflammation through its 
effects on epithelial cells (45).

In our study, significantly higher levels of TNF-α were 
detected in FE-exposed subjects, compared to the control ones. 
Simeonova and colleagues (46,47) found out that asbestos and 
H2O2 both activate NF-κB and NF-IL-6 in A549 and normal 
human bronchial epithelial cells which, in turn, stimulate 
IL-6 and IL-8 gene expression and protein release. A func-
tion for reactive oxygen species (ROS) was clarified by their 
observation that HO. scavengers and N-acetylcysteine (NAC) 
each decreased asbestos or H2O2 induced NF-κB and NF-IL-6 
activity as well as IL-8 and IL-6 protein expression. In vitro 
studies conducted by Travaglione et al (48,49), demonstrated 
that FE interfered with epithelial cell physiology, by reducing 
the proliferation rate without perturbing the cell cycle and 
increasing the release of pro-inflammatory cytokines IL-6 and 
IL-8, from pulmonary epithelial cells.

In our study, FE-exposed subjects showed increased levels 
of IL-6 and IL-8, although in a non-statistically relevant way. 
Higher levels of IL-6, IL-8 and TNF-α, have been observed 
more recurrently overexpressed in the microenvironment of 
mesothelial cells during neoplastic transformation (50-52). 
The continuous stimulation of mesothelial cells from FE 
fibers could account for the increased values of these cyto-
kines, particularly the increase of TNF-α, that is involved 
in the resistance against fiber toxicity  (53). As a matter of 
fact, significantly greater quantities of PPs were observable 
in exposed subjects than in the control groups 25 (66%) 
vs. 2 (5%). PPs can arise even after relatively low exposure to 
asbestiform fibers and are the most common non-malignant 
effects (31-33,35,54-57).

Most research on the role of inflammation in asbestos-
related diseases has been centred on immune cellular response, 
including the first cell type accumulating at sites of initial 
deposition of inhaled asbestos fibres (42). When the injury 
occurs, mesothelial cells can recruit neutrophils, monocytes 
and lymphocytes by generating chemokines and cytokines 
which cause mesothelial cells to release growth factors with 
paracrine functions (50-52,58-60). New evidence on human 
mesothelial cells sustains a model where an autocrine loop 
is perpetrated by fibre-induced inflammasone NLRP3 (NLR 
family pyrin domain containing 3) priming and activation, 
with the subsequent augmented pro-inflammatory growth 
factors transcription activity (61-64).

The inflammasome is a multiprotein complex that links 
proIL-1β to its upstream activator. This complex is composed 
of Pycard, NALP1, caspase-1 and likely caspase-5. It is 
expressed in myeloid cells and is a component of the immune 
system  (65). The IL-1 super-family of cytokines encom-
passes at least 11 members, which include IL-1α, IL-1β, and 
IL-18 (66). The inflammasome is responsible for the activation 
of inflammatory processes (65) and has been shown to induce 
caspase-1 dependent pyroptosis which is a form of cell death 
characterized by both apoptosis and necrosis (67).

A recent study (40) showed that exposure to asbestos and 
asbestiform fibers (i.e. erionite) may trigger and activate the 
inflammasome via multiple mechanisms (40). These fibers 
cause dose-related damage to the cell membrane at high 
concentrations, are phagocytized and can break phagolyso-
somes. These processes may lead to the activation of ROS via 
many paths. Inflammasome-related caspase-1 activation leads 
directly to the maturation and secretion of IL-1β and IL-18, 
as well as other inflammatory mediators such as IL-1α and 
high mobility group box-1 (HMGB1). These chemokines and 
cytokines either directly or indirectly lead to acute and chronic 
inflammation, the latter resulting in various particle and fiber-
associated pulmonary and pleural pathologies (40).

Procaspase-1 is recruited to the inflammasome complex 
and processed to active caspase-1, which processes IL-1 
and IL-18 into their active forms (65,68). This can account 
for the high serum levels of IL-1β detected in FE-exposed 
workers compared to control ones. Besides, in a previous 
study carried out on CWs in Biancavilla, high levels of IL-18 
were observed which well correlated with the presence of 
PPs and lung parenchimal fibrosis  (31). IL-1β helps T-cell 
survival, B-cell proliferation and antibody production, as well 
as mediating leukocyte transmigration (69,70). IL-1β roles 

Figure 1. Mean levels of IL-1β, IL-6, IL-8 and TNF-α detected in fluoro-
edenite (FE) exposed construction workers (CW) and controls.
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in carcinogenicity entails recruitment of myeloid-derived 
suppressor cells (MDSCs) that prevent natural killer (NK) 
cells from developing and functioning (71). IL-18 can work 
synergistically with IL-12 to induce interferon-γ (IFNγ) 
production by activating T- and NK-cells (69-70,72).

The pro-inflammatory cytokine IL-1β, which can be 
inflammasome-dependent, is a critical mediator of inflam-
mation‑promoting carcinogenesis (73-76) and fibrosis (77,78). 
Cell death mechanisms such as apoptosis and necrosis and 
release of chemokines/cytokines and alarmines such as 
HMGB1 and TNF-α, may help cancer regress, resist toxicity 
by fibers and cell growth (62,79), in inflammasome‑dependent 
and -independent pathways (80). The transcription factors, 
activator protein-1 (AP-1) and NF-κB that may change inflam-
mation‑induced tumor growth into cancer regression (79), are 
also signals inducing the transcription or priming of pro-IL-1β.

The induction of caspase-1 dependent pyroptosis, a type 
of cell death characterized by both apoptotic and necrotic 
features, is another important function of inflammasomes (81). 
This progression features nuclear DNA fragmentation, plasma 
membrane rupture and release of inflammatory mediators 
such as IL-1α, IL-1β, IL-33 and HMGB1 which play signifi-
cant roles in inflammatory processes (72,81). Consequently, 
the inflammasome and inflammation can promote prolifera-
tion and maturation of target cells and immune suppression 
in tumors (82). It is assembled in response to a wide range 
of conserved exogenous molecules including asbestos (83). 
Multifaceted inflammasomes are critical in sensing and 
responding to a variety of extracellular and intracellular 
stresses through several pathways and may be important in 
both pulmonary defense and promulgation of chronic inflam-
mation leading to pathologies (40).

In the lungs, highly inflammatory cytokines of the IL-1 
family, including IL-1β, are key factors to inflammation. For 
instance, IL-6, a pleiotropic inflammatory cytokine frequently 
released in tandem with IL-1β, is a key growth-promoting and 
anti-apoptotic factor that is also involved in immune regula-
tion and inflammation (84,85). IL-6 is frequently expressed 
in malignant respiratory epithelial cells, and high circulating 
levels in serum are related to a poor prognosis in lung cancer 
patients (86,87). Its potential use as a biomarker and prog-
nostic indicator is bolstered by the fact that it is not detected 
in the serum of healthy individuals and patients with benign 
lung pathologies (40). Comar et al (88) observed significant 
high levels of IL-6 in MM patients. This is in line with what 
we observed with regard to the increased level of IL-6 in 
the exposed group compared to the controls, although not 
significantly; this may derive from mesothelial involvement, 
although without cancer lesions.

Asbestiform fibers can trigger and activate the NLRP3 
inflammasome in mesothelial and epithelial cells, as well 
as in cells of the immune system via multiple pathways. 
Inflammasome priming and activation may play vital roles 
in both early lung and pleural injury as well as in inflam-
mation, tumor initiation and promotion. TNF-α, a protein 
implicated in both proliferation of mesothelial cells and 
prevention of asbestos-induced injury  (89,90), it may also 
stimulate MM cell survival through the induction of genes 
encoding NF-κB-dependent anti-apoptotic molecules (91,92) 
and activate chemo-resistance. TNF-α receptors are regulated 

by both TNF-α and IL-1α in human mesothelial cells (58) 
that synthesize and release both IL-1β (93) and IL-1α after 
injury (67,68). The fact that the chemotactic and autocrine 
growth factor IL-8 (94-97) is generated by human mesothelial 
cells in response to TNF-α and IL-1 released by macrophages 
or after exposure to asbestos (98), supports the concept that 
inflammasome-mediated mature 1L-1β release is essential to 
the production of other cytokines and chemokines critical to 
the development of MMs (40).

In our study, the observation of significantly high levels of 
TNF-α in exposed subjects could be accounted for with the 
resistance action against the stimulus deriving from inhaling 
FE fibers. As described for asbestos, it is conceivable that FE 
may promote the NLRP3 inflammasome in macrophages, 
monocytes and lung epithelial cells, leading to IL-1β secre-
tion (91,92). Increased production of TGF-β, a hallmark of 
inflammation and the fibrotic process, triggers the activation, 
proliferation and trans-differentiation of epithelial cells and 
resident fibroblasts into collagen-producing myofibroblasts. 
This has been put down to inflammasome-induced secretion 
of mature IL-1β  (98). IL-1β also triggers the secretion of 
neutrophil-attracting CXC chemokines, resulting in a further 
influx of neutrophils that amplify cell damage and oxidant 
release (99). Unlike macrophages and monocytes, NADPH 
oxidase-derived ROS are neither required for inflammasome 
priming nor activation by human neutrophils, but are neces-
sary for exporting mature IL-1β from the cell (100). IL-1β 
secretion by AMs is enhanced by fibrogenic agents that also 
raise production of PDGF, a growth-promoting cytokine and 
chemo-tactic factor (101).

A recent immunohistochemical study, conducted in lung 
tissue of sheep exposed to FE fibers showed a significant 
activation of AM and mast cells  (102). An in vitro study 
on mesothelial Met-5A and monocyte-macrophage J774 
cells exposed to FE caused induction of the heat shock 
protein 70 (Hsp70), stimulated formation of ROS and NO. 
(measured as nitrite). Exposure of cells to FE induced lactate 
dehydrogenase activity and decreased cell viability (103). It 
is conceivable that FE may trigger inflammatory processes 
that, like in the case of asbestos, may lead to the activation of 
inflammosome.

In this study, as well as in a previous one (31) on IL-18, 
where high IL-1β serum levels have been detected, both cyto-
kines are primarily involved in the inflammosome activation 
process. Our results suggest that it is necessary to go on with 
research on immune-modulators involved in the pathogenic 
mechanisms responsible for FE related diseases.
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