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Abstract. Recent clinical trials of chemotherapeutics for 
advanced bladder cancer (BC) have shown limited benefits. 
Therefore, new prognostic markers and more effective treat-
ment strategies are required. One approach to achieve these 
goals is through the analysis of RNA networks. Our recent 
studies of microRNA (miRNA) expression signatures revealed 
that the microRNA-23b/27b (miR-23b/27b) cluster is frequently 
downregulated in various types of human cancers. However, 
the functional role of the miR-23b/27b cluster in BC cells is still 
unknown. Thus, the aim of the present study was to investigate 
the functional significance of the miR-23b/27b cluster and its 
regulated molecular targets, with an emphasis on its contribu-
tions to BC oncogenesis and metastasis. The expression levels 
of the miR-23b/27b cluster were significantly reduced in BC 
clinical specimens. Restoration of mature miR-23b or miR-27b 
miRNAs significantly inhibited cancer cell migration and 
invasion, suggesting that these clustered miRNAs function as 
tumor suppressors. Gene expression data and in silico analysis 
demonstrated that the genes coding for the epidermal growth 
factor receptor (EGFR) and hepatocyte growth factor receptor 
(c-Met) were potential targets of the miR-23b/27b cluster. 
Luciferase reporter assays and western blotting demonstrated 
that EGFR and c-Met receptor trypsine kinases were directly 
regulated by these clustered miRNAs. We conclude that the 
decreased expression of the tumor-suppressive miR-23b/27b 
cluster enhanced cancer cell proliferation, migration and 

invasion in BC through direct regulation of EGFR and c-Met 
signaling pathways. Our data on RNA networks regulated by 
tumor-suppressive miR-23b/27b provide new insights into the 
potential mechanisms of BC oncogenesis and metastasis.

Introduction

In developed contries, bladder cancer (BC) is the fifth most 
commonly diagnosed tumor and the second most common cause 
of death in patients with genitourinary tract malignancies (1). 
BCs can be classified into two categories: non-muscle-invasive 
tumors and muscle-invasive tumors. The 5-year survival 
frequency for patients with non-muscle-invasive BC is 
close to 90%, whereas patients with muscle-invasive tumors 
have 5-year survival frequencies of ~60% (2). Patients with 
non-muscle-invasive BC tend to have a high rate of recurrence. 
Moreover, some patients are found to have muscle-invasive BC 
at recurrence (3). Recent clinical trials of chemotherapeutics 
for advanced BC have shown limited benefits. Therefore, new 
prognostic markers and more effective treatment strategies are 
required. One approach to achieve these goals is through the 
analysis of RNA networks.

Recent studies have demonstrated the importance of non-
coding RNAs (ncRNAs). Participation of these RNAs in human 
diseases, including cancer, is now apparent (4). For example, 
microRNAs (miRNAs) are small ncRNA molecules (19-22 
bases in length) that regulate protein-coding gene expres-
sion by repressing translation or cleaving RNA transcripts 
in a sequence-specific manner (5). Numerous recent studies 
have reported that miRNAs are aberrantly expressed in many 
human cancers. In fact, miRNAs play significant roles in the 
initiation, development and metastasis of human cancers (6).

Important new information has been gained through the 
analysis of the cancer-related miRNA networks. We have 
used our miRNA expression signatures to investigate several 
tumor-suppressive miRNAs and their regulated cancer 
pathways (7-11). Notably, some miRNAs are located in close 
proximity in the human genome; these are termed clustered 
miRNAs. We previously reported that miR-1/133a, miR-29s, 
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miR-143/145 and miR-195/497 formed clusters and that these 
clusters function as tumor suppressors, targeting several onco-
genic genes in human cancers, including BC (7,12-21).

Previously, our miRNA expression signatures revealed that 
miR-23b/27b clustered miRNAs were significantly reduced 
in several cancer tissues (8,9). Our deep sequencing miRNA 
signature of BC also annotated downregulation of miR-23b 
in cancer tissues (7). In contrast, Jin et al showed that the 
expression of miR-23b and miR-27b was highly upregulated 
in human breast cancer, and knockdown of these miRNAs 
substantially repressed breast cancer growth (22). Thus, the 
expression status of the miR-23b/27b cluster is not consistent 
among different types of cancers. Importantly, the functional 
roles of the miR-23b/27b cluster have not been fully investi-
gated in BC.

The aim of the present study was to investigate the 
functional significance of miR-23b/27b clustered miRNAs 
and to identify the molecular targets regulated by these 
miRNAs in BC cells. We found that restoration of miR-23b 
or miR-27b mature miRNAs significantly inhibited cancer 
cell migration and invasion. Gene expression data and 
in silico analysis demonstrated that epidermal growth factor 
receptor (EGFR) and hepatocyte growth factor receptor 
(c-Met) were potential targets of the miR-23b/27b cluster. 
Elucidation of the cancer pathways and targets regulated by 
tumour-suppressive miR‑23b/27b cluster will provide new 
insights into the potential mechanisms of oncogenesis and 
metastasis of BC.

Materials and methods

Clinical specimens. A total of 58 BC and 25 normal bladder 
specimens were collected from patients who underwent cystec-
tomy or transurethral resection of bladder tumors (TUR-BT) 
at the Kagoshima University Hospital. The 25 normal bladder 
specimens were derived from patients without BC. Samples 
were processed and stored in RNAlater® (Qiagen, Valencia, 
CA, USA) at -20˚C until RNA extraction. The samples were 
staged in accordance with the tumor-node-metastasis classi-
fication system of the American Joint Committee on Cancer/
Union Internationale Contre le Cancer (UICC), and they were 
histologically graded. Written informed consent was obtained 
from all patients and the present study was approved by the 
Bioethics Committee of Kagoshima University. The patients' 
backgrounds and clinicopathological characteristics are 
summarized in Table I.

Cell culture and RNA extraction. We used the human BC cell 
lines BOY and T24. BOY was established in our laboratory 
from a male Asian patient, 66-years old, who was diagnosed 
with stage III BC with lung metastasis. T24 was obtained from 
the ATCC. The cell lines were incubated in minimum essential 
medium (MEM) supplemented with 10% fetal bovine serum 
and maintained in a humidified incubator (5% CO2) at 37˚C. 
Total RNA was extracted as previously described (23).

Quantitative real-time RT-PCR. Stem-loop RT-PCR for 
miR-23b (P/N 000400; Applied Biosystems, Foster City, CA, 
USA) and miR-27b (P/N 000409; Applied Biosystems) were 
used to quantitate miRNAs according to previously published 

conditions (11). To normalize data for quantifying the miRNAs, 
we used RNU48 (P/N 001006; Applied Biosystems). The δ-δ 
threshold count method was used to calculate the fold-change.

Mature miRNA transfection. As previously described (11), 
the BC cell lines were transfected with Lipofectamine 
RNAiMAX transfection reagent (Invitrogen, Carlsbad, 
CA, USA) and Opti-MEM (Invitrogen) with 10 nM mature 
miRNA molecules. As the negative control, Pre-miR miRNA 
precursor (P/N AM17111; Applied Biosystems) was used in 
gain-of-function experiments.

Cell proliferation, migration and invasion assays. Cell 
proliferation was determined using an XTT assay performed 
according to the manufacturer's instructions. Cell migration 
activity was evaluated with a wound healing assay and cell 
invasion assays were done using modified Boyden chambers 
as previously described (23). All experiments were performed 
in triplicate.

Putative miR-23b and miR-27b target gene pathway 
analysis and expression. To obtain putative miR-23b- and 
miR-27b-regulated genes, we used the TargetScan data-
base (Release 6.2, http://www.targetscan.org/). To identify 
signaling pathways regulated by the miR-23b/27b cluster, 
in silico and gene expression data were analyzed in the Kyoto 
Encyclopedia of Genes and Genomics (KEGG) pathway 

Table I. Patient characteristics.

characteristics	D ata

Bladder cancer
  Total number	 58
  Median age (range) (years)	 71 (47-91)

  Gender
    Male	 45 (78%)
    Female	 13 (22%)

  Pathological tumor stage
    pTis	 2 (3%)
    pTa	 7 (12%)
    pT1	 10 (17%)
    pT2	 15 (26%)
    pT3	 7 (12%)
    pT4	 5 (9%)
    Unknown	 12 (21%)

  Grade
    G1	 2 (3%)
    G2	 29 (50%)
    G3	 21 (36%)
    Unknown	 6 (1%)

  Operation
    Cystectomy	 23 (40%)
    TUR-BT	 35 (60%)
Normal bladder epithelium	 25
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categories using the GeneCodis program. We performed gene 
expression analyses for all candidate genes involved in each 
of the pathways identified by GeneCodis3 software analysis 
using microarray expression data. The data were approved 
by the Gene Expression Omnibus (GEO) and were assigned 
GEO accession numbers (GSE11783 and GSE31684). For 
microarray expression data, we examined 90 BCs and 6 
normal bladder epithelium collected from patients, none of 
whom had been exposed to chemotherapy before surgery. The 
data were normalized and analyzed with GeneSpring (Agilent 
Technologies, Santa Clara, CA, USA). Statistical analyses 
were conducted using the Mann-Whitney U test.

Western blotting. Three days after transfection, protein 
lysates (20 µg) were separated in NuPAGE on 4-12% bis-tris 
gels (Invitrogen) and transferred to polyvinylidene fluoride 
membranes as previously described (23). Antibodies against 
EGFR and c-Met were purchased from Cell Signaling 
Technology (Danvers, MA, USA). Antibodies against GAPDH 
were purchased from Chemicon (Temecula, CA, USA). Specific 
complexes were visualized with an echochemiluminescence 
(ECL) detection system (GE Healthcare, Little Chalfont, UK).

Plasmid construction and dual-luciferase reporter assays. 
miRNA target sequences were inserted between the XhoI-
PmeI restriction sites in the 3'-untranslated region (UTR) of 
the hRluc gene in the psiCHECK-2 vector (C8021; Promega, 
Madison, WI, USA). miRNA target sequences targeted by 
miR-23b and miR-27b are summarized in Table II.

T24 cells were transfected with 50 ng of the vector and 
10 nM miRNA using Lipofectamine 2000 (Invitrogen). The 
activities of firefly and Renilla luciferases in cell lysates 
were determined with a dual-luciferase assay system (E1910; 
Promega). Normalized data were calculated as the ratio of 
Renilla/firefly luciferase activities.

Statistical analysis. Relationships between 2 or 3 variables and 
numerical values were analyzed using the Mann-Whitney U 
test or Bonferroni adjusted Mann-Whitney U test. Spearman's 
rank test was used to evaluate the correlation between the 
expressions of miR-23b and miR-27b. Expert StatView, version 
4 was used in these analyses.

Results

Expression levels of miR-23b/27b cluster in BC clinical 
specimens. We evaluated the expression levels of miR-23b and 
miR-27b in BC tissues (n=58) and normal bladder specimens 
(n=25). The expression levels of miR-23b and miR-27b were 
significantly lower in tumor tissues than in corresponding 
non-cancerous tissues (both P<0.0001; Fig. 1A). Spearman's 
rank test showed a positive correlation between the expres-
sion of miR-23b and that of miR-27b (r=0.966 and P<0.0001; 
Fig. 1B). These results suggested that miR-23b and miR-27b 
were significantly downregulated in BC and could represent 
putative tumor suppressors in BC.

Effects of restoring miR-23b and miR-27b expression on cell 
proliferation, migration and invasion activities in cancer 
cell lines. To examine the functional roles of miR-23b and 
miR-27b, we performed gain-of-function studies using miRNA 
transfection into BOY and T24 cells. XTT assays revealed 
significant inhibition of cell proliferation in BOY and T24 
cells transfected with miR-23b and miR-27b in comparison 
with mock-transfected cells and control transfectants (BOY: 
P=0.0011 and P<0.0001, respectively; T24: P=0.0035 and 
P<0.0001, respectively) (Fig. 2A).

Moreover, wound healing assays demonstrated significant 
inhibition of cell migration was observed in BOY and T24 
cells transfected with miR-23b and miR-27b (BOY: P<0.0001 
and P=0.0001, respectively; T24: both P<0.0001) (Fig. 2B).

Similarly, Matrigel invasion assays revealed that transfec-
tion with these miRNAs reduced cell invasion. Indeed, the 
number of invading cells was significantly decreased in BOY 
and T24 cells transfected with miR-23b and miR-27b (BOY: 
P<0.0024 and P<0.0001, respectively; T24: P<0.0075 and 
P<0.0001, respectively) (Fig. 2C).

Identification of targets pathways and genes regulated by 
the miR-23b/27b cluster in BC cells. To gain further insight 
into the molecular mechanisms and pathways regulated by the 
tumor-suppressive miR-23b/27b cluster in BC, we performed 
a combination of gene expression and in silico analyses. The 
strategy for selecting miR-23b/27b cluster-regulated pathways 
is shown in Fig. 3.

Figure 1. Expression levels of miR-23b/27b in clinical bladder specimens. (A) miR-23b/27b expression levels were significantly lower in 58 BC clinical 
specimens than in 25 normal bladder specimens. (B) The expression of miR‑23b and miR-27b was positively correlated.

  A   B
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Figure 2. Effects of miR-23b/27b transfection into BC cell lines BOY and T24. (A) Cell proliferation determined by XTT assay. *P<0.005. **P<0.0001. (B) Cell 
migration activity determined with the wound healing assay. *P<0.0005. **P<0.0001. (C) Cell invasion activity determined with the Matrigel invasion assay. 
*P<0.01. **P<0.0001.

Figure 3. The strategy for selecting target pathways regulated by the miR-23b/27b cluster.
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The TargetScan program showed that 4206 and 4075 
genes had putative target sites for miR-23b and miR-27b-, 
respectively, in their 3'-UTR regions. To confirm the expres-
sion levels of these genes in clinical BC tissues, GEO database 
(GEO accession number: GSE11783 and GSE31684) analysis 
was performed. The data showed that 1827 and 1733 genes 
were 2.0-fold or more upregulated in BC tissues compared to 
normal tissues for miR-23b and miR-27b target genes, respec-
tively. KEGG analysis revealed that the top ‘pathway’ (greatest 
number of genes) was ‘Pathways in cancer’ (Table III). Several 
common putative target genes were included in this pathway 
(Table IV). We focused on EGFR, RET and c-Met genes that 
coded for tyrosine kinase receptors.

EGFR and c-Met were regulated by miR-23b and miR-27b. 
We performed western blot analysis of BOY and T24 cells 
to investigate whether EGFR, RET and c-Met expression 
were downregulated by restoration of miR-23b and miR-27b. 
Expression of EGFR protein was significantly repressed 
in miR-27b transfectants in comparison with mock or miR-
control transfectants (Fig. 4). The protein expression level of 
c-Met was significantly repressed in miR-23b and miR-27b 
transfectants (Fig.  4). RET protein expression was not 
repressed in either miR-23b or miR-27b transfectants (Fig. 4).

EGFR and c-Met were directly targeted by miR-23b and 
miR-27b. We performed a luciferase reporter assay in T24 

to determine whether EGFR and c-Met had target sites for 
miR-23b and miR-27b. The TargetScan database predicted that 
two putative miR-27b binding sites existed in the 3'-UTR of 
EGFR (positions 200-207 and 430-436; Fig. 5A). The database 
showed that one putative miR-23b binding site existed in the 
3'-UTR of EGFR. However, EGFR protein expression was 
not repressed in miR-23b transfectants (Fig. 4). Therefore, we 
performed a luciferase reporter assay to determine whether 
EGFR had target sites for miR-27b. The database also predicted 
that two putative miR-23b binding sites and one putative 
miR-27b binding site existed in the c-Met 3'-UTR (positions 
1019-1026, 2065-2072 and 1564-1571, respectively; Fig. 5B). 
We used wild-type and mutant vectors encoding either the 
partial sequence of the 3'-UTRs of EGFR and c-Met, including 
the predicted miR-23b and miR-27b target sites.

We found that the luminescence intensity was significantly 
reduced by transfection of miR-27b with the wild-type vector 
carrying the 3'-UTR of EGFR (position 200-207: P<0.0001; 
position 430-436: P<0.0001; Fig. 5B), whereas transfection 
with a mutant vector showed no decrease in luminescence.

With regards to c-Met, the luminescence intensity was 
significantly reduced by transfection of miR-23b with vectors 
carrying a portion of the 3'-UTR of c-Met (position 1019-1026: 
P<0.0001; position 2065-2072: P<0.0001; Fig. 5B) and the 
luminescence intensity was also reduced by transfection of 
miR-27b with the vector carrying the 3'-UTR of c-Met (posi-
tion 1564-1571: P<0.0001; Fig. 5B), whereas transfection with 
a mutant vector failed to decrease luminescence.

Discussion

Aberrant expression of the miR-23b/27b cluster has been 
reported in several types of human cancers; however, the 
expression status varies according to the cancer type. 
Decreased expression of the miR-23b/27b cluster has been 
observed in castration-resistant prostate cancer (24) and drug-
resistant Ehrlich ascites tumor (25). In contrast, upregulation 
of the miR-23b/27b cluster was reported in breast cancer (22) 

Table III. Top 10 enriched pathways in miR-23b and miR-27b.

	 Nο. of
Annotations	 genes	 P-value

miR-23b
  Pathways in cancer	 50	 5.09E-15
  Neuroactive ligand-receptor interaction	 39	 5.52E-11
  MAPK signaling pathway	 24	 4.60E-04
  Cytokine-cytokine receptor interaction	 23	 8.97E-04
  Endocytosis	 22	 6.98E-05
  Focal adhesion	 21	 2.03E-04
  Regulation of actin cytoskeleton	 21	 3.72E-04
  Calcium signaling pathway	 20	 1.35E-04
  Glutamatergic synapse	 19	 6.90E-06
  Chemokine signaling pathway	 19	 5.79E-04

miR-27b
  Pathways in cancer	 42	 2.14E-10
  MAPK signaling pathway	 30	 1.30E-06
  Neuroactive ligand-receptor interaction	 29	 4.67E-06
  Calcium signaling pathway	 24	 1.23E-06
  Axon guidance	 23	 2.23E-08
  Regulation of actin cytoskeleton	 22	 1.42E-04
  Endocytosis	 20	 3.85E-04
  Glutamatergic synapse	 19	 3.35E-06
  Chemokine signaling pathway	 18	 1.34E-03
  Cytokine-cytokine receptor interaction	 18	 2.10E-02

Figure 4. EGFR and c-Met protein expression levels were suppressed by 
miR‑23b/27b transfection in BOY and T24 cells. Expression of EGFR, c-Met 
and RET protein as revealed by western blot analysis. GAPDH was used as 
a loading control.
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and chemoresistant ovarian cancer cells (26). In the present 
study, our data demonstrated that miR-23b and miR-27b 
expression was significantly downregulated in BC clinical 
specimens. Functional analysis demonstrated that restoration 
of miR-23b and miR-27b in BC cells inhibited cancer cell 
proliferation, migration and invasion. Those results suggest 
that the miR-23b/27b cluster functions as a tumor suppressor 
and may contribute to metastasis in BC. Of particular interest, 
our recent study showed that miR-24-1, which is located close 
to the miR-23b/27b cluster, was downregulated in BC tissues 
and functioned as a tumor suppressor targeting FOXM1 (27). 
Thus, our data suggest that the miR-23b/27b cluster, including 
miR-24-1, functions as a tumor suppressor and significantly 
contributes to BC oncogenesis and metastasis.

Next, we investigated the pathways/targets that were 
regulated by the tumor-suppressive miR-23b/27b cluster in BC 
cells. To identify tumor-suppressive, miRNA-regulated molec-
ular pathways, we used a combination of expression data and 
in silico database analysis. Using this strategy, we have identi-
fied molecular targets and pathways in several types of cancer 
that are regulated by tumor-suppressive miRNAs, including 
BC  (7-11). In the present study, ‘pathways in cancer’, the 
‘MAPK signaling pathway’ and ‘cytokine-cytokine receptor 
interaction’ were significantly selected as candidate pathways 
regulated by the miR-23b/27b cluster in BC cells. Among 
these pathways, we focused attention on ‘pathways in cancer’ 
and searched for putative targets of miR-23b/27b regulation. 
We focused on tyrosine kinase receptors such as EGFR, RET 

and c-Met genes because molecularly targeted therapies aimed 
at inhibiting their activities have been developed recently for 
several types of cancer (28). Our results showed that EGFR 
was directly regulated by miR-27b and that c-Met was directly 
regulated by both miR-23b and miR-27b. Unfortunately, RET 
was not controlled by either miRNA.

EGFR is the cell-surface receptor for members of the 
epidermal growth factor family of extracellular protein 
ligands (29). Receptor activation initiates several signal trans-
duction cascades, including the MAPK, Akt and JNK pathways, 
leading to DNA synthesis and cell proliferation (30). Previous 
studies showed that overexpression of EGFR occurred in BC 
and the expression level correlated with tumor grade, stage and 
survival (31-33).

Another receptor, c-Met (hepatocyte growth factor 
receptor) activates multiple signal transduction pathways 
such as those involving RAS, PI3K-Akt, STAT and β-catenin 
(34-37). The expression of c-Met and phosphorylated c-Met 
are positively correlated with tumor grade, stage, tumor size 
and survival of several types of cancers. It is likely that c-Met 
could be a promising therapeutic target in disease (38,39). 
The amplification frequency of c-Met is approximately 20% 
in patients who have acquired resistance to EGFR tyrosine 
kinase inhibitors  (40). Therefore, inhibition of EGFR and 
c-Met and their associated signaling pathways could be a 
potent strategy for cancer therapy. Studies of dual tyrosine 
kinase inhibitors are underway (41). Several laboratories have 
shown that miRNAs directly inhibit EGFR or/and c-Met 

Table IV. miR-23b/27b common target genes highly expressed in bladder cancer.

	 Clinical BCs
-------------------------------------
Change	 P-value	E ntrez gene ID	S ymbol	D escription

19.55	 4.67E-05	 7849	 PAX8	 paired box 8
6.79	 1.14E-04	 1021	 CDK6	 cyclin-dependent kinase 6
5.98	 1.64E-04	 1956	 EGFR	 epidermal growth factor receptor
5.00	 2.65E-04	 2034	 EPAS1	 endothelial PAS domain protein 1
4.74	 1.21E-04	 208	 AKT2	 v-akt murine thymoma viral oncogene homolog 2
4.60	 5.91E-04	 2246	 FGF1	 fibroblast growth factor 1 (acidic)
4.20	 8.23E-04	 861	 RUNX1	 runt-related transcription factor 1
3.96	 3.16E-03	 2250	 FGF5	 fibroblast growth factor 5
3.91	 3.75E-04	 7170	 TPM3	 tropomyosin 3 
3.75	 4.46E-04	 4089	 SMAD4	SM AD family member 4 
3.75 	 5.59E-04	 3918	 LAMC2	 laminin, γ 2
3.42	 7.80E-05	 862	 RUNX1T1	 runt-related transcription factor 1; translocated to, 1 (cyclin D-related) 
3.31	 6.45E-05	 5979	 RET	 ret proto-oncogene
3.09	 1.75E-02	 4286	 MITF	 microphthalmia-associated transcription factor
2.87	 8.69E-04	 4233	 c-Met	 met proto-oncogene
2.83	 1.15E-02	 2259	 FGF14	 fibroblast growth factor 14
2.83	 1.14E-04	 3845	 KRAS	K irsten rat sarcoma viral oncogene homolog
2.68	 2.32E-02	 7188	 TRAF5	 TNF receptor-associated factor 5
2.63	 2.73E-03	 2932	 GSK3B	 glycogen synthase kinase 3 β
2.60	 1.82E-03	 5594	 MAPK1	 mitogen-activated protein kinase 1
2.40	 1.48E-03	 4193	 MDM2	MDM 2 oncogene, E3 ubiquitin protein ligase
2.37	 1.40E-03	 5579	 PRKCB	 protein kinase C, β
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expression, such as miR-7, miR-146a, miR-574-3p, miR-34a, 
miR-130a and miR-1/206 (42-47). In addition, a recent study 
demonstrated that miR-27a regulated both EGFR and c-Met 
in non-small cell lung cancer (48). In the present study, the 
miR-23b/27b cluster regulated EGFR and c-Met in BC cells. 
Therefore, inhibition of two separate tyrosine kinases via the 

tumor-suppressive miR-23b/27b cluster represents an attrac-
tive possibility in the development of new treatment options 
in cancer.

In conclusion, downregulation of the miR-23b/27b cluster is 
a frequent event in BC. Moreover, tumor-suppressive miR-23b 
and miR-27b directly regulated tyrosine kinase receptor genes 

Figure 5. (A) Luciferase reporter assays using vectors encoding putative target 
sites in the 3'-UTR. T24 cells were transiently transfected with Pre-miR miRNA 
precursor or negative control, followed by transient transfection with wild-type 
3'-UTR reporter plasmids or mutated 3'-UTR plasmids. Renilla luciferase 
activity was measured 24 h after transfection. The results are normalized to 
firefly luciferase values. *P<0.0001. (B) Luciferase reporter assays using vectors 
encoding putative target sites in the c-Met 3'-UTR.
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EGFR and c-Met. Identification of molecular targets regulated 
by tumor-suppressive miRNAs will provide insights into the 
potential mechanisms of BC oncogenesis and metastasis, 
facilitating the development of novel therapeutic strategies for 
the treatment of BC.
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