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Abstract. Vertebral fractures commonly occur at the thora-
columbar junction. These fractures can be treated with mild 
residual deformity in many cases, but are reportedly associ-
ated with increased risk of secondary vertebral fractures. In 
the present study, a three‑dimensional (3D) whole spine model 
was constructed using the finite element method to explore the 
mechanism of development of compression fractures. The 3D 
model of the whole spine, from the cervical spine to the pelvis, 
was constructed from computed tomography (CT) images of 
an adult male. Using a normal spine model and spine models 
with compression fractures at the T11, T12 or L1 vertebrae, the 
distribution of strain was analyzed in the vertebrae after load 
application. The normal spine model demonstrated greater 
strain around the thoracolumbar junction and the middle 
thoracic spine, while the compression fracture models indi-
cated focused strain at the fracture site and adjacent vertebrae. 
Increased load time resulted in the extension of the strain 
region up to the middle thoracic spine. The present findings, 
that secondary vertebral fractures commonly occur around 
the fracture site, and may also affect the thoracic vertebrae, 
are consistent with previous clinical and experimental results. 
These results suggest that follow‑up examinations of compres-
sion fractures at the thoracolumbar junction should include the 
thoracic spine and adjacent vertebrae. The current data also 
demonstrate that models created from CT images can be used 
for various analyses.

Introduction

With the aging of the population, there is an ongoing increase 
in the number of patients with osteoporosis (1). Reportedly, 
>50% of women in their 80s are osteoporotic (2), while 40% 
have vertebral compression fractures (3). Vertebral fractures 
commonly occur at the thoracolumbar junction. These frac-
tures can be treated with mild residual deformity in many cases, 
but are reportedly associated with increased risk of secondary 
vertebral fractures (4‑6). In patients with osteoporosis‑asso-
ciated vertebral fractures, the risk of secondary vertebral 
fractures appears to increase with each additional fracture (2). 
Compared with patients without vertebral fractures, patients 
with one vertebral fracture and those with multiple vertebral 
fractures are reported to have a 3.2‑ and 6.7‑fold higher risk of 
experiencing secondary vertebral fractures, respectively (7).

Various therapies and clinical/experimental studies have 
been reported for vertebral compression fractures  (8‑12). 
For the prevention of osteoporotic vertebral fractures, it is 
reported that bisphosphonates, including etidronate, alendro-
nate, minodronic acid, risedronate, ibandronate suppress the 
onset of vertebral fractures by 36‑62% (13‑17), teriparatide 
suppresses onset of vertebral fracture by 65‑80% (18‑19) and 
denosumab suppressed onset of vertebral fracture by 68% (20). 
Regarding the treatment of osteoporotic vertebral fractures, 
alignment can be corrected by performing vertebroplasty 
or spinal shortening osteotomy, but in the case of conserva-
tive treatment, there is a possibility that kyphotic deformity 
will remain  (21,22). Regarding alignment abnormalities 
following osteoporotic vertebral fractures, it is possible to 
evaluate the mechanism of secondary vertebral fractures by 
creating a fracture model using the finite element method and 
performing mechanical analysis, however to the best of our 
knowledge, this is the first study to create a three‑dimensional 
whole spine model directly from a medical image and perform 
a mechanical analysis. The authors propose that it is important 
to extract a model from each patient's medical images and to 
perform individualized analysis in future clinical practice. 
The aim of the present study was to construct a normal whole 
spine model and compression fracture models with vertebral 
deformities at T11, T12 and L1 vertebrae, which are commonly 
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affected by compression fractures, from the medical images of 
a patient using FEM. Furthermore, the validity of the models 
and the mechanism of development of secondary compression 
fractures were determined.

Materials and methods

Patient images. Computed tomography (CT) images (0.67‑mm 
slice thickness) of the whole spine, ranging from the cervical 
spine to the pelvis, of an adult male (Japanese, aged 32 years) 
were obtained with the Brilliance 64 CT scanner (Philips 
Healthcare, Amsterdam, The Netherlands). The use of these 
CT images was approved by the ethics committee at the Center 
for Clinical Research, Yamaguchi University Hospital (Ube, 
Japan; approval no. H29‑052).

Model construction. Model construction was performed 
with FEM analysis software, Simpleware ScanIP version 
M‑2017.06 (Synopsys, Inc. Mountain View, CA, USA. After 
the spine was extracted, vertebrae were mapped into cancel-
lous and cortical bones and the sizes of intervertebral discs 
(IVDs) were adjusted to match the sizes of end plates of each 
vertebra (Fig. 1). A 3D whole spine model was constructed by 
individually mapping all vertebrae and IVDs from the cervical 
to sacral regions. The gap between each vertebra and IVD was 
regarded as completely restricted in movement. Facet joint 
spaces were created at all levels so that each vertebra could 
move independently. The model without compression fracture 
was defined as the normal spine model. Whole spine models 
with compression fractures were created by trimming the 
cranial and caudal surfaces of the T11, T12 or L1 vertebrae 
by 5˚ and 10˚ to make the angle formed by the cranial and 
caudal surfaces of each vertebra 10˚ and 20 ,̊ respectively, and 
also by rotating IVDs on the cranial and caudal sides of each 
vertebra (Fig. 2). These were defined as T11 10 ,̊ T11 20 ,̊ T12 
10 ,̊ T12 20 ,̊ L1 10˚ and L1 20˚ compression fracture models. 
Considering that in normal sagittal alignment, a perpendicular 
line from the center of the C7 vertebra passes through the 
center of the upper surface of the sacral vertebrae (23), the 
standing position was reproduced by rotating the sacral verte-
brae to compensate for kyphosis.

In the normal model, the total number of elements and 
nodes was 405,335 and 1,875,549, respectively. In this 
analysis, all elements were considered to be linear elastic 
materials. Young's modulus was set as cortical bone: 12,000 
MPa, cancellous bone: 1,500 MPa, IVD: 10 MPa. Poisson's 
ratio was set as cortical bone: 0.3, cancellous bone: 0.3, IVD: 
0.4, according to a previously published paper (24). Dynamic 
analysis was performed assuming that the volunteer fell on 
his/her buttocks and load was applied to the spine.

Load application. Assuming that the pelvis was in a consis-
tent position during the fall and the sacroiliac joint was fixed, 
a 1,200‑N load, corresponding to two‑thirds of the body 
weight (60 kg) excluding the feet, was applied in a vertical 
direction, distributed according to the number of nodes of 
the whole spine. The load rise time was set at 0.002 sec. 
Analysis was performed using Jvision version 3.3.0 (JSOL 
Corporation, Tokyo, Japan) and LS‑DYNA version R9.1.0 
(JSOL Corporation) software.

Results

Fig. 3 indicates the distribution of the minimum principal 
strain of the spinal model after 0.004 sec and Fig. 4 indicates 
the distribution of the minimum principal strain of the spinal 
model after 0.01 sec. Fig. 5 presents graphs of the minimum 
principal strain after 0.004 sec and Fig. 6 presents graphs of 
the minimum principal strain after 0.01 sec.

At 0.004  sec after load application, peak strain was 
observed not only at the thoracolumbar junction, but also in 
the middle thoracic spine in the normal spine and compression 
fracture models (T11 10 ,̊ T11 20 ,̊ T12 10 ,̊ T12 20˚ and L1 10 ;̊ 
Figs. 3 and 5)

At 0.01 sec after load application, peak strain shifted to the 
thoracic spine in the normal spine model. In the compression 
fracture models, peak strain moved to the thoracic vertebrae, 
but the larger the fracture angle, the less the movement to the 
thoracic vertebrae. (T 11 20 ,̊ T 12 20˚ L 1 20˚>T 11 10 ,̊ T 12 
10 ,̊ L 1 10˚>normal; Figs. 4 and 6).

Discussion

Spinal compression fractures commonly occur at the thoraco-
lumbar junction (T11 to L2 level), which is biomechanically 
vulnerable to stress and can lead to kyphotic deformity 
of the spine at the fracture site  (25). Lumbar kyphosis is 
compensated for by reduced thoracic kyphosis to maintain the 
sagittal balance, while thoracic kyphosis is compensated for 
by increased lordosis of the lumbar spine (26). This results in 
altered alignment of the whole spine and altered load applica-
tion to each vertebra, which is a suggested cause of secondary 
compression fracture.

Regarding reduced quality of life (QOL) due to compres-
sion fracture, Glassman  et  al  (27,28) have reported that 
increased anterior inclination of the body trunk is associated 
with greater impairment of QOL. Miyakoshi et al (29) have 
reported reduced QOL due to poor sagittal balance, where 
kyphosis of the thoracic or lumbar spine is associated with 
marked reduction in QOL. Takahashi et al (30) reported that 
worsening of gait disturbance due to spinal kyphosis is asso-
ciated with reduced frequency of going outdoors, leading to 
reduced satisfaction with daily life. These reports suggest the 
importance of preventing secondary compression fractures. 
For the prevention of secondary compression fractures, the 
importance of osteoporosis treatment has been emphasized 
and various surgical therapies, including balloon kyphoplasty, 
have been proposed (13‑17,31).

While the usefulness of FEM analysis of the spine 
has been demonstrated in many studies (8‑12), only a few 
studies have analyzed spinal compression fracture by FEM. 
Imai et al (32) compared the results of FEM analysis and 
an actual compression experiment using samples of the 
thoracolumbar junction collected from fresh cadavers and 
demonstrated that bone strength and fracture sites can be 
predicted by FEM analysis. Tawara et al (33‑35) reported 
the usefulness of FEM analysis for examining osteoporotic 
spines using CT images of bisphosphonate‑treated patients, 
although they only analyzed limited intervertebral spaces 
and did not take into account the anatomical variability 
across the whole spine.
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Figure 1. Normal model construction. (A) Cortical bone, (B) cancellous bone and (C) intervertebral discs were mapped from computed tomography images.

Figure 2. Compression model construction. (A) The T11 10˚ compression fracture model was created by trimming the cranial and caudal surfaces of the T11 
vertebrae by 5˚ each. (B) The T11 20˚ compression fracture model was created by trimming the cranial and caudal surfaces of the T11 vertebrae by 10˚ each.

Figure 3. Computer model of load application after 0.004 sec. (A) Normal spine model. (B) T11 10˚ compression fracture model. (C) T11 20˚ compression 
fracture model. (D) T12 10˚ compression fracture model. (E) T12 20˚ compression fracture model. (F) L1 10˚ compression fracture model. (G) L1 20˚ compres-
sion fracture model.

Figure 4. Computer model of load application after 0.01 sec. (A) Normal spine model. (B) T11 10˚ compression fracture model. (C) T11 20˚ compression 
fracture model. (D) T12 10˚ compression fracture model. (E) T12 20˚ compression fracture model. (F) L1 10˚ compression fracture model. (G) L1 20˚ compres-
sion fracture model.
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Although used in a limited number of reports as described 
above, FEM analysis has been demonstrated to be effective 
for the clinical analysis of compression fractures and other 

conditions. Based on the proposal that FEM analysis of 
compression fractures using whole spine models extracted 
from medical images of patients could be effective for the 

Figure 5. Minimum principal strain after 0.004 sec. (A) Normal spine model. (B) T11 10˚ compression fracture model. (C) T11 20˚ compression fracture model. 
(D) T12 10˚ compression fracture model. (E) T12 20˚ compression fracture model. (F) L1 10˚ compression fracture model. (G) L1 20˚ compression fracture 
model.

Figure 6. Minimum principal strain after 0.01 sec. (A) Normal spine model. (B) T11 10˚ compression fracture model. (C) T11 20˚ compression fracture model. 
(D) T12 10˚ compression fracture model. (E) T12 20˚ compression fracture model. (F) L1 10˚ compression fracture model. (G) L1 20˚ compression fracture 
model.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  15:  3225-3230,  2018 3229

prevention of secondary compression fractures, models were 
created in the current study. It was investigated whether the 
obtained findings were consistent with those reported in 
clinical and experimental studies.

Osteoporotic spinal compression fractures have been 
reported to occur most commonly at the thoracolumbar junc-
tion (4‑6). The current results also demonstrated focused strain 
at the thoracolumbar junction in the normal spine model, which 
was consistent with previous findings. Secondary compression 
fractures have been reported to occur most commonly in 
adjacent vertebrae, followed by the middle thoracic spine (36). 
The compression fracture models of the present study revealed 
focused strain in the fractured vertebra and adjacent vertebrae 
within a short time, more prominently as compared with the 
normal spine model, and spread of strain up to the middle 
thoracic spine over time, which was consistent with previous 
clinical findings.

The present study had certain limitations. First, the present 
models did not consider ligaments, particularly the supra-
spinatus and interspinatus ligaments, joint capsule, muscles 
and ribs. Second, anterior inclination associated with spinal 
compression fracture was compensated for only by rotation 
of the pelvis in our models; however, in actual patients, it is 
compensated for by inclination, in addition to rotation, of the 
pelvis and the IVD‑lower limb alignment (26,37). Other limi-
tations include the assumption that the material constants of 
vertebrae and IVDs and bone mineral density were fixed, and 
that consistent load was applied to the spine when the patient 
fell on his/her buttocks. Finally, the analysis did not consider 
the patient's posture, the hardness of the ground or the time 
elapsed during the fall.

Nevertheless, the findings obtained from the whole spine 
model and compression fracture models created from medical 
images in the present study support previous findings. The 
development of improved models that overcome the aforemen-
tioned limitations may contribute to the prevention of damage 
to adjacent IVDs and progression to burst fractures, and also 
to the development of rehabilitation programs to compensate 
for stress applied to the fractured vertebrae.

In conclusion, FEM models were created of the whole 
spine from medical images and strain analysis was 
performed using compression fracture models. The normal 
spine model exhibited a shift of high strain region from the 
thoracolumbar junction to the middle thoracic spine, while 
the compression fracture models exhibited focused strain 
at the fracture site and adjacent vertebrae. These results 
supported the previous findings, and suggested that whole 
spine models created from medical images could be used for 
various types of analysis.
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