Skip to main content
Log in

Endophytic Bacterial Diversity in the Young Radish and Their Antimicrobial Activity against Pathogens

  • Food Science/Microbiology
  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Endophytic bacteria have several ecological roles and can be used as biocontrol agents and also participate in antibiosis interactions. The diversity of endophytic bacteria associated with young radish (YR, yeulmu, Raphanus sativus L.) leaves and roots from Gyeongnam Agricultural Research and Extension Services in Jinju, Korea was investigated. A total of 264 colonies were isolated from the interior of YR leaves and roots. Phylogenetic analysis based on 16S rDNA sequences indicated that the isolates belonged to four major phylogenetic groups: high G+C Gram positive bacteria, low G+C Gram positive bacteria, Proteobacteria, and Bacteroidetes. Endophytic bacteria from the phylum Proteobacteria were predominant in the leaf (61.3%) and root (52.1%) samples. Most colonies that exhibited extracellular enzymatic activity belonged to the genus Bacillus, and Bacillus subtilis (YRL02, YRL07, YRR03, and YRR10) exhibited the stronger activities in extracellular enzyme such as amylase, cellulase, xylanase, mannase, PGAase, DNase, protease, and esterase than other colonies. In addition, Enterobacter sp. YRL01 and B. subtilis YRL02 had the highest amount of inhibitory action against human pathogenic bacteria, while B. subtilis YRR10 hand an inhibitory action against plant pathogenic fungi. Thus, these bacteria can be used as biocontrol agents against human and plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Mallah MK, Davey MR, and Cooking EC (1987) Enzymatic treatment of clover root hairs removes a barrier to Rhizobium-host specificity. Biotechnology 5, 1319–1322.

    Article  CAS  Google Scholar 

  • An DJ, Lew KC, and Lee KP (1999) Effects of adipic acid and storage temperature on extending the shelf life of kimchi. Food Sci Biotechnol 8, 78–82.

    Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, Jr van Elsas JD, van Vuurde JWL, and Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fatidiosa in citrus plants. Appl Environ Microbiol 68, 4906-4914.

    Article  Google Scholar 

  • Arrieta J, Hernandez L, Coego A, Suarez V, Balmori E, Menendez C, Petit-Glatron MF, Chambert R, and Selman-Housein G (1996) Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4. Microbiology 142, 1077–1085.

    Article  CAS  Google Scholar 

  • Barbosa TM, Serra CR, Ragione RML, Woodward MJ, and Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71, 968–978.

    Article  CAS  Google Scholar 

  • Bauer WD and Mathesius U (2004) Plant responses to bacterial quorum sensing singals. Curr Opin Plant Biol 7, 429–433.

    Article  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, and Hallmann J (2005) Endophytic and ectophytic potatoassociated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51, 215–229.

    Article  CAS  Google Scholar 

  • Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Kim H, and Yun HD (2006) A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol 73, 618–630.

    Article  CAS  Google Scholar 

  • Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, and Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microbial Ecol 54, 341–351.

    Article  CAS  Google Scholar 

  • Cho SJ, Park SR, Kim MK, Lim WJ, Ryu SK, An CL, Hong SY, Lee YH, Jeong SG, Cho YU, and Yun HD (2002) Endophytic Bacillus sp. isolated from the interior of ballon flower root. Biosci Biotechnol Biochem 66, 1270–1275.

    Article  CAS  Google Scholar 

  • Conn VM and Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70, 6407–6413.

    Article  CAS  Google Scholar 

  • Coombs JT and Franco CMM (2003) Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69, 5603–5608.

    Article  CAS  Google Scholar 

  • Elvira-Recuenco M and van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46, 1036–1041.

    Article  CAS  Google Scholar 

  • Enya J, Koitabshi M, Shinohara H, Yoshida S, Tsukiboshi T, Negishi H, Suyama K, and Tsushima S (2007) Phylogenetic diversities of dominant culturable Bacillus, Pseudomonas and Pantoea species on tomato leaves and their possibility as biological control agents. J Phytopathol 155, 446–453.

    Article  CAS  Google Scholar 

  • Garbeva P, Overheek van LS, Vuurde van JWI, and van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecol 41, 360–383.

    Google Scholar 

  • Germida JJ, Siciliano SD, Freitas de JR, and Seib AM (1998) Diversity of root-associated bacteria associated with fieldgrown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26, 43–50.

    Article  CAS  Google Scholar 

  • Granér G, Persson P, Meijer J, and Alström S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224, 269–276.

    Article  Google Scholar 

  • Guo X, van Iersel MW, Chen J, Brackett RE, and Beuchat LR (2002) Evidence of association of salmonellae with tomato plants grown hydroponically in inoculated solution. Appl Environ Microbiol 68, 3639–3643.

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, and Kloepper JW (1997) Bacterial endophytes in agricoltural crops. Can J Microbiol 43, 895–914.

    Article  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, and Triplett EW (2005) Requlation of enteric endophytic bacterial colonization by plant defense. Mol Plant-Microbe Interact 18, 169–178.

    Article  CAS  Google Scholar 

  • Lilley AK, Fry JC, Bailey MJ, and Day MJ (1996) Comparison of aerobic heterotropic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol Ecol 21, 231–242.

    Article  CAS  Google Scholar 

  • Lima AOS, Quecine MC, Fungaro MHP, Andreote FD, Jr Maccheroni W, Araújo WL, Silva-Filho MC, Pizzirani-Kleiner AA, and Azevedo JL (2005) Molecular characterization of a β-1,4-endoglucanase from an endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol 68, 57–65.

    Article  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, and Baurer WD (2003) Extensive and specific response of a eukaryotes to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100, 1444–1449.

    Article  CAS  Google Scholar 

  • McGinnis S and Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32, 20–25.

    Article  Google Scholar 

  • McInroy JA and Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173, 337–342.

    Article  CAS  Google Scholar 

  • Menendez C, Hemandez L, Selman G., Mendoza MF, Hevia P, Sotolongo M, and Arrieta JG (2002) Molecular cloning and expression in Escherichia coli of an exo-levanase gene from the endophytic bacterium Gluconacetobacter diazotrophicus SRT4. Curr Microbiol 45, 5–12.

    Article  CAS  Google Scholar 

  • Mocali S, Bertelli E, Cello FD, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, and Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 154, 105–114.

    Article  Google Scholar 

  • Mundt JO and Hinkle JO (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32, 694–698.

    CAS  Google Scholar 

  • Parke JL and Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39, 225–258.

    Article  CAS  Google Scholar 

  • Quadt-Hallmann A, Benhamou AN, and Kleopper JW (1997) Bacterial endophytes in cotton: Mechanisms of entering the plant. Can J Microbiol 43, 577–582.

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B and Hurek T (1998) Life in grasses: Diazotrophic endophytes. Trend Microbiol 6, 139–144.

    Article  CAS  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, and Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68, 2261–2268.

    Article  CAS  Google Scholar 

  • Rosenblueth M and Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interat 19, 827–837.

    Article  CAS  Google Scholar 

  • Saito N and Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.

    Google Scholar 

  • Sakiyama CCH, Paula EM, Pereira PC, Borges AC, and Silva DO (2001) Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 33, 117–121.

    Article  CAS  Google Scholar 

  • Sambrook J and Russel DW (2001) In Molecular Cloning: A Laboratory Manual, (3th ed.). Cold Spring Harbor Laboratory Press, New York, NY, U.S.A.

    Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, and Siciliano SD (2004) Impact of agricultural practice on the Zea mays L. endophytic community. Appl Environ Microbiol 70, 1475–1482.

    Article  CAS  Google Scholar 

  • Siciliano SD and Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecol 29, 263–272.

    Article  CAS  Google Scholar 

  • Stamford TL, Stamfod NP, Coelho LC, and Araujo JM (2001) Production and characterization of a thermostable alphaamylase from Nocardiopsis sp. endophyte of yam bean. Bioresour Technol 76, 137–141.

    Article  CAS  Google Scholar 

  • Stamford TL, Stamfod NP, Coelho LC, and Araujo JM (2002) Production and characterization of a thermostable glucoamylase from Streptosporangium sp. endophyte of maize leaves. Bioresour Technol 83, 105–109.

    Article  CAS  Google Scholar 

  • Strobel G and Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67, 491–502.

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, and Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67, 257–68.

    Article  CAS  Google Scholar 

  • Sturz AV, Chrssistie BR, Matheson BG, and Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25, 13-19.

    Article  Google Scholar 

  • Sturz AV and Nowak J (2000) Endophytic communities of rhizobacter and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15, 183–190.

    Article  Google Scholar 

  • Tompson JD, Higgins DG, and Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.

    Article  Google Scholar 

  • Ulrich K, Ulrich A, and Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63, 169–80.

    Article  CAS  Google Scholar 

  • Verma SC, Ladha JK, and Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 81, 127–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kye Man Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, W.T., Lim, W.J., Kim, E.J. et al. Endophytic Bacterial Diversity in the Young Radish and Their Antimicrobial Activity against Pathogens. J. Korean Soc. Appl. Biol. Chem. 53, 493–503 (2010). https://doi.org/10.3839/jksabc.2010.075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2010.075

Key words

Navigation